43 research outputs found

    The heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization, secondary chemistry, and the role of particle phase

    No full text
    International audienceWe studied the OH oxidation of submicron aerosol particles consisting of pure palmitic acid (PA) or thin (near monolayer) coatings of PA on aqueous and effloresced inorganic salt particles. Experiments were performed as a function of particle size and OH exposure using a continuous-flow photochemical reaction chamber coupled to a chemical ionization mass spectrometer (CIMS) system, for detection of gas and particle-bound organics, and a DMA/CPC for monitoring particle size distributions. The loss rate of PA observed for pure PA aerosols and PA on crystalline NaCl aerosols indicates that the OH oxidation of PA at the gas-aerosol interface is efficient. The pure PA oxidation data are well represented by a model consisting of four main processes: 1) surface-only reactions between OH and palmitic acid, 2) secondary reactions between palmitic acid and OH oxidation products, 3) volatilization of condensed-phase mass, and 4) a surface renewal process. Using this model we infer a value of ?OH between 0.8 and 1. The oxidation of palmitic acid in thin film coatings of salt particles is also efficient, though the inferred ?OH is lower, ranging from ~0.3 (+0.1/?0.05) for coatings on solid NaCl and ~0.05 (±0.01) on aqueous NaCl particles. These results, together with simultaneous data on particle size change and volatilized oxidation products, provide support for the ideas that oxidative aging of aliphatic organic aerosol is a source of small oxidized volatile organic compounds (OVOCs), and that OH oxidation may initiate secondary condensed-phase reactions

    Feasibility of coupling a thermal/optical carbon analyzer to a quadrupole mass spectrometer for enhanced PM2.5 speciation

    Get PDF
    A thermal/optical carbon analyzer (TOA), normally used for quantification of organic carbon (OC) and elemental carbon (EC) in PM2.5 (fine particulate matter) speciation networks, was adapted to direct thermally evolved gases to an electron impact quadrupole mass spectrometer (QMS), creating a TOA-QMS. This approach produces spectra similar to those obtained by the Aerodyne aerosol mass spectrometer (AMS), but the ratios of the mass to charge (m/z) signals differ and must be remeasured using laboratory-generated standards. Linear relationships are found between TOA-QMS signals and ammonium (NH4+), nitrate (NO3-), and sulfate (SO42-) standards. For ambient samples, however, positive deviations are found for SO42-, compensated by negative deviations for NO3-, at higher concentrations. This indicates the utility of mixed-compound standards for calibration or separate calibration curves for low and high ion concentrations. The sum of the QMS signals across all m/z after removal of the NH4+, NO3-, and SO42- signals was highly correlated with the carbon content of oxalic acid (C2H2O4) standards. For ambient samples, the OC derived from the TOA-QMS method was the same as the OC derived from the standard IMPROVE_A TOA method. This method has the potential to reduce complexity and costs for speciation networks, especially for highly polluted urban areas such as those in Asia and Africa.Implications: Ammonium, nitrate, and sulfate can be quantified by the same thermal evolution analysis applied to organic and elemental carbon. This holds the potential to replace multiple parallel filter samples and separate laboratory analyses with a single filter and a single analysis to account for a large portion of the PM2.5 mass concentration

    Analysis of secondary organic aerosol formation and aging using positive matrix factorization of high-resolution aerosol mass spectra: application to the dodecane low-NO_x system

    Get PDF
    Positive matrix factorization (PMF) of high-resolution laboratory chamber aerosol mass spectra is applied for the first time, the results of which are consistent with molecular level MOVI-HRToF-CIMS aerosol-phase and CIMS gas-phase measurements. Secondary organic aerosol was generated by photooxidation of dodecane under low-NOx conditions in the Caltech environmental chamber. The PMF results exhibit three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition. The slope of the measured high-resolution aerosol mass spectrometer (HR-ToF-AMS) composition data on a Van Krevelen diagram is consistent with that of other low-NO_x alkane systems in the same O : C range. Elemental analysis of the PMF factor mass spectral profiles elucidates the combinations of functionality that contribute to the slope on the Van Krevelen diagram

    Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013

    Get PDF
    We present results of the first intercomparison of real-time instruments for gas/particle partitioning of organic species. Four recently-developed instruments that directly measure gas/particle partitioning in near-real time were deployed in Centreville, Alabama during the Southern Oxidant Aerosol Study (SOAS) in 2013. Two instruments were filter inlet for gases and aerosols high-resolution chemical ionization mass spectrometers (FIGAERO-HRToF-CIMS) with acetate (A-CIMS) and iodide (I-CIMS) ionization sources, respectively; the third was a semi-volatile thermal desorption aerosol GC-MS (SV-TAG); and the fourth was a high-resolution thermal desorption proton-transfer reaction mass spectrometer (HR-TD-PTRMS). Signals from these instruments corresponding to several organic acids were chosen for comparison. The campaign average partitioning fractions show good correlation. A similar level of agreement with partitioning theory is observed. Thus the intercomparison exercise shows promise for these new measurements, as well as some confidence on the measurement of low versus high particle-phase fractions. However, detailed comparison show several systematic differences that lie beyond estimated measurement errors. These differences may be due to at least eight different effects: (1) underestimation of uncertainties under low signal-to-noise; (2) inlet and/or instrument adsorption/desorption of gases; (3) differences in particle size ranges sampled; (4) differences in the methods used to quantify instrument backgrounds; (5) errors in high-resolution fitting of overlapping ion groups; (6) differences in the species included in each measurement due to different instrument sensitivities; and differences in (7) negative or (8) positive thermal decomposition (or ion fragmentation) artifacts. The available data are insufficient to conclusively identify the reasons, but evidence from these instruments and available data from an ion mobility spectrometer shows the particular importance of effects 6–8 in several cases. This comparison highlights the difficulty of this measurement and its interpretation in a complex ambient environment, and the need for further improvements in measurement methodologies, including isomer separation, and detailed study of the possible factors leading to the observed differences. Further intercomparisons under controlled laboratory and field conditions are strongly recommended

    Analysis of secondary organic aerosols in air using extractive electrospray ionization mass spectrometry (EESI-MS)

    Full text link
    Extractive electrospray ionization mass spectrometry (EESI-MS) has been shown, in other laboratories, to be a useful technique for the analysis of aerosols from a variety of sources.EESI-MS is applied here, for the first time, to the analysis of secondary organic aerosol (SOA) formed from the reaction of ozone and α-pinene. The results are compared to those obtained using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). The SOA was generated in the laboratory and merged with electrospray droplets. The recovered ions were directed towards the inlet of a triple quadrupole mass spectrometer. Through the use of a denuder to remove gas phase compounds, the EESI-MS technique was found to be effective for measuring the major ozonolysis products either in particles alone or in a combination of vapor phase and particulate products. Due to its relatively simple setup and the avoidance of sample collection and work-up, EESI-MS shows promise as an excellent tool for the characterization of atmospherically relevant particles

    Perspective on Mechanism Development and Structure‐Activity Relationships for Gas‐Phase Atmospheric Chemistry

    Get PDF
    This perspective gives our views on general aspects and future directions of gas‐phase atmospheric chemical kinetic mechanism development, emphasizing on the work needed for the sustainable development of chemically detailed mechanisms that reflect current kinetic, mechanistic, and theoretical knowledge. Current and future mechanism development efforts and research needs are discussed, including software‐aided autogeneration and maintenance of kinetic models as a future‐proof approach for atmospheric model development. There is an overarching need for the evaluation and extension of structure‐activity relationships (SARs) that predict the properties and reactions of the many multifunctionalized compounds in the atmosphere that are at the core of detailed mechanisms, but for which no direct chemical data are available. Here, we discuss the experimental and theoretical data needed to support the development of mechanisms and SARs, the types of SARs relevant to atmospheric chemistry, the current status and limitations of SARs for various types of atmospheric reactions, the status of thermochemical estimates needed for mechanism development, and our outlook for the future. The authors have recently formed a SAR evaluation working group to address these issues

    Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures

    Full text link

    Comparison of Particulate Mercury Measured with Manual and Automated Methods

    No full text
    A study was conducted to compare measuring particulate mercury (HgP) with the manual filter method and the automated Tekran system. Simultaneous measurements were conducted with the Tekran and Teflon filter methodologies in the marine and coastal continental atmospheres. Overall, the filter HgP values were on the average 21% higher than the Tekran HgP, and >85% of the data were outside of ±25% region surrounding the 1:1 line. In some cases the filter values were as much as 3-fold greater, wit
    corecore