9 research outputs found

    A Multi-Pronged Approach Targeting SARS-CoV-2 Proteins Using Ultra-Large Virtual Screening

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed in silico screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 in silico hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development.</p

    Changes in amniotic fluid concentration of thrombin–antithrombin III complexes in patients with preterm labor: Evidence of an increased thrombin generation

    No full text
    OBJECTIVE: Preterm labor is associated with excessive maternal thrombin generation as evidenced by increased circulating thrombin–antithrombin (TAT) III complexes concentration. In addition to its hemostatic functions, thrombin has uterotonic properties that may participate in the mechanism leading to preterm birth in cases of intrauterine bleeding. Thrombin also has a proinflammatory role, and inflammation is associated with increased thrombin generation. The aim of this study was to determine whether intra-amniotic infection/inflammation (IAI) is associated with increased amniotic fluid (AF) thrombin generation in women with preterm and term deliveries. STUDY DESIGN: This cross-sectional study included the following groups: 1) mid-trimester (n=74); 2) term not in labor (n=39); 3) term in labor (n=25); 4) term in labor with IAI (n=22); 5) spontaneous preterm labor (PTL) who delivered at term (n=62); 6) PTL without IAI who delivered preterm (n=59); 7) PTL with IAI (n=71). The AF TAT III complexes concentration was measured by ELISA. Non-parametric statistics were used for analysis. RESULTS: 1) TAT III complexes were identified in all AF samples; 2) patients with PTL who delivered preterm, with and without IAI, had a significantly higher median AF TAT III complexes concentration than those with an episode of PTL who delivered at term (p<0.001, p=0.03, respectively); 3) among patients with preterm labor without IAI, elevated AF TAT III complexes concentration were independently associated with a shorter amniocentesis-to-delivery interval (hazard ratio- 1.5, 95%CI, 1.07–2.1); 4) among patients at term, those with IAI had a higher median AF TAT III complexes concentration than those without IAI, whether in labor or not in labor (p=0.02); 5) there was no significant difference between the median AF TAT III complexes concentration of patients at term with and without labor; and 6) patients who had a mid-trimester amniocentesis had a lower median AF TAT III complexes concentration than that of patients at term not in labor (p<0.001). CONCLUSIONS: We present herein a distinct difference in the pattern of intra-amniotic thrombin generation between term and preterm parturition. Preterm labor leading to preterm delivery is associated with an increased intra-amniotic thrombin generation, regardless of the presence of IAI. In contrast, term delivery is associated with an increased intra-amniotic thrombin generation only in patients with IAI
    corecore