316 research outputs found

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    The waking brain: an update

    Get PDF
    Wakefulness and consciousness depend on perturbation of the cortical soliloquy. Ascending activation of the cerebral cortex is characteristic for both waking and paradoxical (REM) sleep. These evolutionary conserved activating systems build a network in the brainstem, midbrain, and diencephalon that contains the neurotransmitters and neuromodulators glutamate, histamine, acetylcholine, the catecholamines, serotonin, and some neuropeptides orchestrating the different behavioral states. Inhibition of these waking systems by GABAergic neurons allows sleep. Over the past decades, a prominent role became evident for the histaminergic and the orexinergic neurons as a hypothalamic waking center

    VEGFA Upregulates FLJ10540 and Modulates Migration and Invasion of Lung Cancer via PI3K/AKT Pathway

    Get PDF
    BACKGROUND: Lung adenocarcinoma is the leading cause of cancer-related deaths among both men and women in the world. Despite recent advances in diagnosis and treatment, the mortality rates with an overall 5-year survival of only 15%. This high mortality is probably attributable to early metastasis. Although several well-known markers correlated with poor/metastasis prognosis in lung adenocarcinoma patients by immunohistochemistry was reported, the molecular mechanisms of lung adenocarcinoma development are still not clear. To explore novel molecular markers and their signaling pathways will be crucial for aiding in treatment of lung adenocarcinoma patients. METHODOLOGY/PRINCIPAL FINDINGS: To identify novel lung adenocarcinoma-associated /metastasis genes and to clarify the underlying molecular mechanisms of these targets in lung cancer progression, we created a bioinformatics scheme consisting of integrating three gene expression profile datasets, including pairwise lung adenocarcinoma, secondary metastatic tumors vs. benign tumors, and a series of invasive cell lines. Among the novel targets identified, FLJ10540 was overexpressed in lung cancer tissues and is associated with cell migration and invasion. Furthermore, we employed two co-expression strategies to identify in which pathway FLJ10540 was involved. Lung adenocarcinoma array profiles and tissue microarray IHC staining data showed that FLJ10540 and VEGF-A, as well as FLJ10540 and phospho-AKT exhibit positive correlations, respectively. Stimulation of lung cancer cells with VEGF-A results in an increase in FLJ10540 protein expression and enhances complex formation with PI3K. Treatment with VEGFR2 and PI3K inhibitors affects cell migration and invasion by activating the PI3K/AKT pathway. Moreover, knockdown of FLJ10540 destabilizes formation of the P110-alpha/P85-alpha-(PI3K) complex, further supporting the participation of FLJ10540 in the VEGF-A/PI3K/AKT pathway. CONCLUSIONS/SIGNIFICANCE: This finding set the stage for further testing of FLJ10540 as a new therapeutic target for treating lung cancer and may contribute to the development of new therapeutic strategies that are able to block the PI3K/AKT pathway in lung cancer cells

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA γp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the γA system of WγA,n=65 GeV is found to be consistent with a power-law behaviour σ(γA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio

    Diagnosis and management of Cornelia de Lange syndrome:first international consensus statement

    Get PDF
    Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning

    Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere

    Get PDF
    It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105 km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer
    corecore