996 research outputs found

    Rapid and complete hitless defragmentation method using a coherent RX LO with fast wavelength tracking in elastic optical networks

    Get PDF
    This paper demonstrates a rapid and full hitless defragmentation method in elastic optical networks exploiting a new technique for fast wavelength tracking in coherent receivers. This technique can be applied to a single-carrier connection or each of the subcarriers forming a superchannel. A proof-of-concept demonstration shows hitless defragmentation of a 10 Gb/s QPSK single-carrier connection from 1547.75 nm to 1550.1 nm in less than 1 mu s. This was obtained using a small (0.625 kB) link-layer transmitter buffer without the need for any additional transponder. We also demonstrated that the proposed defragmentation technique is capable of hopping over an existing connection, i.e. 10 Gb/s OOK at 1548.5 nm, without causing any degradation of its real-time Bit Error Rate (BER) value. The proposed scheme gives advantages in terms of overall network blocking probability reduction up to a factor of 40. (C) 2012 Optical Society of Americ

    Extraordinary photoluminescence and strong temperature/angle-dependent raman responses in few-layer phosphorene

    Full text link
    © 2014 American Chemical Society. Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (two to five layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us to use an optical method to quickly determine the crystalline orientation without tunneling electron microscopy or scanning tunneling microscopy. Our results provide much needed experimental information about the band structures and exciton nature in few-layer phosphorene

    Spherical montmorillonite-supported nano-silver as a self-sedimentary catalyst for methylene blue removal

    Get PDF
    Supported metal nanoparticles using various substrates have been proven as a highly efficient approach for solving the problems of aggregation and recyclability of metal nanoparticles. However, the reusability procedure often involved the abundant devices, which obviously increased the cost and heavily limited the large-scale application of metal nanoparticles. In this work, spherical montmorillonite was used firstly as the substrate for supporting silver nanoparticles on its surface through polydopamine chemistry method. The loading of silver nanoparticles with 40 nm in diameter was 15.2 wt% and the specific surface area of this prepared spherical montmorillonite supported silver nanoparticles catalyst was 45.3 m(2)/g, giving the catalyst an optimized apparent reduction rate constant k of 1.22 min(-1) for the reduction of methylene blue. Furthermore, the prepared catalyst with quickly self-sedimentary property in aqueous solution were conveniently recovered and reused without any devices involves. The spherical morphology and catalytic performance of prepared catalyst were almost unaltered after 5 cycles. Our research aims at opening a new avenue to easily realize the reusability of silver nanoparticles through using the substrate with the self-sedimentary property

    Nuclear receptors in vascular biology

    Get PDF
    Nuclear receptors sense a wide range of steroids and hormones (estrogens, progesterone, androgens, glucocorticoid, and mineralocorticoid), vitamins (A and D), lipid metabolites, carbohydrates, and xenobiotics. In response to these diverse but critically important mediators, nuclear receptors regulate the homeostatic control of lipids, carbohydrate, cholesterol, and xenobiotic drug metabolism, inflammation, cell differentiation and development, including vascular development. The nuclear receptor family is one of the most important groups of signaling molecules in the body and as such represent some of the most important established and emerging clinical and therapeutic targets. This review will highlight some of the recent trends in nuclear receptor biology related to vascular biology

    ATP-Sensitive Potassium Channels Exhibit Variance in the Number of Open Channels below the Limit Predicted for Identical and Independent Gating

    Get PDF
    In small cells containing small numbers of ion channels, noise due to stochastic channel opening and closing can introduce a substantial level of variability into the cell's membrane potential. Negatively cooperative interactions that couple a channel's gating conformational change to the conformation of its neighbor(s) provide a potential mechanism for mitigating this variability, but such interactions have not previously been directly observed. Here we show that heterologously expressed ATP-sensitive potassium channels generate noise (i.e., variance in the number of open channels) below the level possible for identical and independent channels. Kinetic analysis with single-molecule resolution supports the interpretation that interchannel negative cooperativity (specifically, the presence of an open channel making a closed channel less likely to open) contributes to the decrease in noise. Functional coupling between channels may be important in modulating stochastic fluctuations in cellular signaling pathways

    Effects of Vacuum Annealing on the Conduction Characteristics of ZnO Nanosheets

    Get PDF
    This paper is open acess and available in full at http://www.nanoscalereslett.com/content/10/1/368 .ZnO nanosheets are a relatively new form of nanostructure and have demonstrated potential as gas-sensing devices and dye sensitised solar cells. For integration into other devices, and when used as gas sensors, the nanosheets are often heated. Here we study the effect of vacuum annealing on the electrical transport properties of ZnO nanosheets in order to understand the role of heating in device fabrication. A low cost, mass production method has been used for synthesis and characterisation is achieved using scanning electron microscopy (SEM), photoluminescence (PL), auger electron spectroscopy (AES) and nanoscale two-point probe. Before annealing, the measured nanosheet resistance displayed a non-linear increase with probe separation, attributed to surface contamination. Annealing to 300 °C removed this contamination giving a resistance drop, linear probe spacing dependence, increased grain size and a reduction in the number of n-type defects. Further annealing to 500 °C caused the n-type defect concentration to reduce further with a corresponding increase in nanosheet resistance not compensated by any further sintering. At 700 °C, the nanosheets partially disintegrated and the resistance increased and became less linear with probe separation. These effects need to be taken into account when using ZnO nanosheets in devices that require an annealing stage during fabrication or heating during use

    IL-6-174 G/C and -572 C/G Polymorphisms and Risk of Alzheimer’s Disease

    Get PDF
    Associations between interleukin 6 (IL-6) polymorphisms and Alzheimer’s disease (AD) remain controversial and ambiguous. The aim of this meta-analysis is to explore more precise estimations for the relationship between IL-6-174 G/C and -572 C/G polymorphisms and risk for AD. Electronic searches for all publications in databases PubMed and EMBASE were conducted on the associations between IL-6 polymorphisms and risk for AD until January 2012. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated using fixed and random effects models. Twenty-seven studies were included with a total of 19,135 individuals, involving 6,632 AD patients and 12,503 controls. For IL-6-174 G/C polymorphism, the combined results showed significant differences in recessive model (CC vs. CG+GG: OR = 0.65, 95%CI = 0.52–0.82). As regards IL-6-572 C/G polymorphism, significant associations were shown in dominant model (CG+GG vs. CC: OR  = 0.73, 95% CI = 0.62–0.86) and in additive model (GG vs. CC, OR  = 0.66, 95% CI = 0.46–0.96). In conclusion, genotype CC of IL-6-174 G/C and genotype GG plus GC of IL-6-572 C/G could decrease the risk of AD

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Accurate Genome Relative Abundance Estimation Based on Shotgun Metagenomic Reads

    Get PDF
    Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data- sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes
    corecore