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ZnO nanosheets are a relatively new form of nanostructure and have demonstrated potential as gas-sensing
devices and dye sensitised solar cells. For integration into other devices, and when used as gas sensors, the
nanosheets are often heated. Here we study the effect of vacuum annealing on the electrical transport properties
of ZnO nanosheets in order to understand the role of heating in device fabrication. A low cost, mass production
method has been used for synthesis and characterisation is achieved using scanning electron microscopy (SEM),
photoluminescence (PL), auger electron spectroscopy (AES) and nanoscale two-point probe. Before annealing, the
measured nanosheet resistance displayed a non-linear increase with probe separation, attributed to surface
contamination. Annealing to 300 °C removed this contamination giving a resistance drop, linear probe spacing
dependence, increased grain size and a reduction in the number of n-type defects. Further annealing to 500 °C
caused the n-type defect concentration to reduce further with a corresponding increase in nanosheet resistance
not compensated by any further sintering. At 700 °C, the nanosheets partially disintegrated and the resistance
increased and became less linear with probe separation. These effects need to be taken into account when using
Zn0 nanosheets in devices that require an annealing stage during fabrication or heating during use.

Background
ZnO nanomaterials have received much attention over
the past 15 years due to their novel properties includ-
ing being a wide band gap (3.37 eV) piezoelectric ma-
terial with a large exciton binding energy of 60 meV [1,
2]. ZnO nanomaterials have many potential applica-
tions including antimicrobial bio-films [3], microelec-
tronics [4], mechanical energy harvesting [5], field
emitters [6], ultra violet lasers [7], photovoltaics [8] and
other optoelectronic devices [9]. Polycrystalline ZnO
nanosheets are a relatively new form of nanostructure
and have demonstrated promising potential for prac-
tical applications such as gas-sensing devices and dye
sensitised solar cells due to their high surface area to
volume ratio [10, 11].

In order to study the intrinsic properties of materials,
vacuum annealing is commonly used to remove surface
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contamination [12]. Furthermore, standard semiconductor
fabrication techniques often include annealing stages for
dopant activation, Ohmic contact formation and implant-
ation repairs [12]. Additionally, devices including gas
sensors operate at high temperature which can alter the
grain structure of polycrystalline materials [13]. Our
earlier work found that grains within the nanosheets
start to sinter when annealed at 700 °C in air [14]. Also,
photoluminescence (PL) found that the shape and size
of the deep level emission (DLE) peak indicated a sig-
nificant relative increase in p-type defects with anneal-
ing temperature, attributed to a decrease in oxygen
vacancies. Oxygen vacancies give rise to the inherent n-
type nature of ZnO and therefore any changes in these
vacancies due to annealing suggest a change in the re-
sistivity of the nanosheets [15]. However, the evolution
of transport properties through ZnO nanosheets after
annealing has not been studied.

Here, we investigate the effects of vacuum annealing on
the chemical composition, morphology, optical and con-
ductive properties of ZnO nanosheets using nanoscale
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two-point probe, Auger electron spectroscopy (AES), PL
and scanning electron microscopy (SEM).

Methods

Layered basic zinc acetate (LBZA) nanosheets were synthe-
sised using our previous method [14]. A 500 ml solution of
0.1 M zinc acetate dihydrate (Zn(CH3COO),.2H,0) and
0.04 M hexamethylenetetramine (HMTA, (CH,)sN,) from
Sigma Aldrich Co. Ltd was heated in an 800 W commer-
cial microwave for 6 min. The solution was centrifuged,
the supernatant removed and the residue re-suspended
in DI water. The resulting nanosheets were deposited
onto silicon with 100 nm of thermal oxide (referred to
as Sample 1) and two pieces of n-type (100) silicon
from the Institute of Electronic Materials Technology
(referred to as Sample 2 and Sample 3), and all three
samples were initially annealed in air at 400 °C to ther-
mally decompose the LBZA to ZnO.

Two-point probe measurements were carried out on
Sample 1 in ultra-high vacuum (UHV) using an Omi-
cron LT Nanoprobe equipped with a NanoSAM electron
analyser, base pressure 1x 107'® mbar. Sample 2 was
characterised with AES within the Nanoprobe chamber,
and Sample 3 with high-resolution SEM using a Hitachi
S$4800 and PL using a 325-nm wavelength He-Cd laser
and an Ocean Optics USB2000+ spectrometer. All charac-
terisation techniques were carried out at room temperature.
All samples were annealed to 300, 500 and 700 °C for 1 h
in UHV and allowed to cool before being re-characterised.
Sample 1 and Sample 2 were not removed from the
vacuum between heating stages and analysis. For the
PL, three spectra were taken from different areas of the
sample and averaged. The AES was performed at 20K
magnification using a beam acceleration voltage of
5 kV and 1 nA beam current through a 90 um beam
aperture.

Two-point probe measurements were carried out using
tungsten probes, annealed to reduce probe oxide contam-
ination [16, 17]. Two tungsten probes were approached
using a method developed to ensure minimal compressive
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strain at the point of contact providing intrinsic character-
isation of the nanosheet [18]. I-V sweeps were per-
formed from -1 to 1 V at five probe separations with
two of the positions shown in Fig. 1, each repeated
five times. After annealing the nanosheets in vacuum,
the probes were repositioned onto the same measure-
ment locations, on the same nanosheet, as shown in
the Additional file 1: Figure S1.

Results and Discussion

The synthesised nanosheets were of rectangular form
with width typically ranging from 3 to 12 um, lengths
typically ranging from 8 to 25 pm and thicknesses typ-
ically ranging from 20 to 100 nm. Figure 2 shows SEM
images of the grain structure before and after vacuum
annealing. Before vacuum annealing the average grain
size was 5+ 1.3 nm, as measured from one representa-
tive high-resolution SEM frame. After annealing to
300 °C, the grains sintered to form clusters of around
50-100 nm. The sintered grain size was much larger
than that measured following similar annealing in air
and is more comparable to annealing at 800 °C in air
[14]. This is likely due to the effect of the melting point
dependence on pressure, which is well-documented
[19, 20]. At 500 °C, the grains sintered further, whilst
at 700 °C the nanosheets appear much darker, as
shown by the SEM image in Fig. 2d indicating lower
conductivity, and show signs of fracturing and partial
disintegration.

In Fig. 3, the mean nanosheet resistance at +1 V
measured using the two-point probe is shown against
probe separation. One outlier with a standard deviation
more than 12 times the average was removed. For
homogenous materials, a standard resistivity model
would give a linear increase with probe separation. For
polycrystalline materials, the resistance primarily in-
creases in a step-like fashion across the grain boundar-
ies [21]. However, since the grain size here is much
smaller than the length scale shown, the trend should
still be linear. Therefore, perturbations away from

probes on the ZnO nanosheet

Fig. 1 a First position of the tungsten probes on a ZnO nanosheet with an arrow marking a dislocation and b final position of the tungsten
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¢ 500 °C and d 700 °C, with insets showing probe positions

Fig. 2 SEM images of ZnO nanosheets (a) before vacuum annealing with an arrow marking a void and after vacuum annealing at b 300 °C,

linearity in the data in Fig. 3 are not caused by the
polycrystalline nature of the nanosheets. Instead, these
are likely caused by dislocations and voids in the nano-
sheet, some examples of which are indicated by the
arrows in Figs. 1a and 2a. The same discontinuities are
present in the 300 and 500 °C data but are reduced in
magnitude as the total resistance reduces. The 300 and
500 °C data is shown magnified in the inset in Fig. 3.
The regression coefficients are improved after anneal-
ing at 300 and 500 °C. Therefore, we attribute the poorer

fit of the prior non-annealed case to inconsistent probe-
nanosheet contacts due to surface contaminants which
are removed during annealing [12]. The regression coef-
ficient at 700 °C decreased due to the partial disintegra-
tion of the nanosheet structure as discussed earlier.

PL spectra shown in Fig. 4 are normalised to the near
band edge (NBE) peak which remained centred at
378 nm for all annealing stages. Before annealing, the
DLE peak maximum is at 640 nm with peak fitting indi-
cating constituent components centred at 595, 635, 690
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Fig. 3 Mean two-point probe resistance measurements at +1 V with standard deviation, against probe separation for ZnO nanosheets before and
after vacuum annealing at 300, 500 and 700 °C, with inset showing 300 and 500 °C. A least squares linear fit is overlaid for all
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Fig. 4 PL spectra of ZnO nanosheets before and after vacuum
annealing at 300, 500 and 700 °C with red arrows marking the peak
positions of p-type defects and blue arrows marking the peak positions
if n-type defects

and 765 nm. These components correspond to transi-
tions from: an oxygen vacancy with a single positive
charge to an oxygen interstitial with no charge [22-24]
an oxygen vacancy with a single positive charge to an
oxygen vacancy with no charge [25], an oxygen vacancy
with no charge to the valance band [26], the conduction
band to an oxygen vacancy with no charge [26-28],
respectively. These DLE transitions are caused by elec-
tron donor defect states indicating that the sheets are n-
type [2].

After annealing to 300 °C, the intensity of the DLE
peak to decrease relative to the NBE with the compo-
nents remaining centred at the same positions. However,
annealing caused components centred at 470, 520 and
543 nm to increase which are attributed to the p-type
defect transitions: an interstitial oxygen ion with a single
negative charge [29], an oxygen occupying a zinc site
[29, 28, 26] and a transition from the conduction band
to an oxygen interstitial with no charge [30, 31, 23, 28].
Further annealing to 500 °C caused the intensity of the
DLE peak to decrease relative to the NBE with all com-
ponents reducing. This is the same effect as seen in pre-
vious work when annealing ZnO nanosheets in air at
1000 °C, although annealing in UHV causes the effect to
occur at a much lower temperature. Annealing to 700 °C
caused all components of the DLE peak to increase rela-
tive to the NBE peak. However, the SEM images show
that there is significant damage to the ZnO nanosheets;
therefore, the PL spectrum for the nanosheets annealed
to 700 °C is not reliable.

AES was used to assess the chemical composition of
the ZnO nanosheets with annealing.

Spectra for the O KLL and Zn LMM transitions were
collected from two points on a nanosheet, and two sili-
con spectra were taken from the substrate at each
annealing stage. The average ratio of oxygen and zinc

Page 4 of 6

normalised to the average silicon peak intensity is plot-
ted in Fig. 5. This result shows the stoichiometry is
retained when annealing up to 500 °C in vacuum. How-
ever, annealing at 700 °C caused loss of stoichiometry
supporting the SEM image in Fig. 2d that shows the
partial disintegrated ZnO nanosheets at the same
temperature.

Earlier, the resistance was shown to decrease after an-
nealing at 300 °C, with the data becoming more linear
and the gradient reducing. This is caused both by the
removal of surface contaminants and the increase in
the average grain size reducing the number of grain
boundary edges through which electrons must travel.
The resistance decrease could have been caused by an
increase in n-type defects giving rise to higher apparent
doping, although the PL rules this out, instead showing
an increase in p-type defects which would in fact com-
pensate for the n-type carriers.

Annealing to 500 °C causes the number of n-type
defects to decrease, further reducing the number of
charge carriers and causing the observed increase in re-
sistance. Unlike when annealing at 300 °C, at this
higher temperature, the additional surface cleaning and
sintering effects do not compensate for the reduction in
defect doping.

Conclusions

A low-cost, high throughput microwave method has
been used to synthesis ZnO nanosheets using a solution
of HMTA and zinc acetate. Vacuum annealing has
allowed the study of intrinsic material properties in a
controlled environment. Before annealing, the mea-
sured resistance against length is less uniform due to
surface contamination. At 300 °C, the resistance drops
due to surface cleaning and increased grain size, out-
weighing the reduction in n-type defect doping and the
increase in p-type defect doping measured with PL. At
500 °C, the resistance increases as both n-type and p-
type defect doping reduces further which is no longer

1.00 {=
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Fig. 5 AES of ZnO nanosheets showing percentage of each element
before and after annealing compared to silicon
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offset by surface cleaning and further grain sintering.
Annealing to 700 °C resulted in the partial disintegra-
tion of the nanosheet structure, observed both in SEM
and by the loss of stoichiometry observed with AES.

Our results are in agreement with previous PL and
SEM studies; however, we find that annealing in vac-
uum causes both the increase in p-type defect forma-
tion, and the sintering of the grains, to occur at a
significantly lower temperature than observed when
annealed in air [14]. Our transport measurements show
for the first time that low-temperature annealing of
ZnO nanosheets is required prior to contact formation
in order to remove surface contaminants and form
reliable contacts. Our results also suggest that the oper-
ation of any ZnO nanosheet-based device which re-
quires a high-temperature annealing fabrication process
step, or is operated at high temperature, will be ad-
versely affected.

Additional File

Additional file 1: Figure S1. SEM images of probe position a) position
one before annealing, b) position two before annealing, ¢) position three
before annealing, d) position four before annealing, e) position five
before annealing, f) position one after annealing to 300 °C, g) position
two after annealing to 300 °C, h) position three after annealing to 300 °C,
i) position four after annealing to 300 °C and j) position five after
annealing to 300 °C. (DOCX 358 kb)
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AES: Auger Electron Spectroscopy; DLE: deep level emission;
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UHV: ultra-high vacuum.
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