687 research outputs found

    Effect of adhesive system, resin cement, heat-pressing technique, and thermomechanical aging on the adhesion between titanium base and a high-performance polymer.

    Get PDF
    STATEMENT OF PROBLEM Even though polyetheretherketone (PEEK) has become popular for various prosthetic indications, a standard adhesive protocol to bond the PEEK to titanium bases has not been yet established. How the heat-pressing technique performs in this respect is also not clear. PURPOSE The purpose of this in vitro study was to investigate the effect of an adhesive system-cement combination, the heat-pressing technique, and thermomechanical aging on the retention force between titanium bases and PEEK specimens. MATERIAL AND METHODS Sixty 9×11×20-mm PEEK specimens with a titanium base slot integrated into the design were milled to simulate an implant-supported PEEK framework for a cantilevered fixed prosthesis. The specimens were assigned to 8 groups (n=10) according to the titanium base primer (MKZ or Monobond) and resin cement (DTK or Multilink hybrid) used and with or without thermomechanical aging. Twenty PEEK specimens were directly heat-pressed on titanium bases, and half of the specimens were not subjected to thermomechanical aging (n=10). For nonaged groups, the PEEK specimen complex was tightened to an implant analog and secured on a custom-made pull-off device. Retention forces were measured by using the pull-off tensile test in a universal testing machine, and the maximum tensile bond strength (MPa) was calculated. The aged groups were subjected to 5000 cycles of thermal aging (5 °C to 55 °C), and the specimens were clamped to load the extension (cantilever) for 1 200 000 cycles with 120 N and 200 N at 1.5-Hz frequency. After aging, the pull-off test was performed for those specimens that survived thermomechanical aging. A nonparametric Kruskal-Wallis test was used to determine whether there was a difference among the groups, followed by pairwise Wilcoxon rank tests with Bonferroni correction. The Wilcoxon rank test was used to analyze the effect of thermomechanical aging in each adhesive system-cement or heat-press group (α=.05 for all tests). RESULTS None of the specimens failed during cyclic loading. According to the Kruskal-Wallis test, the effect of the PEEK-Ti base bonding technique on the retention force in the nonaged (P=.019) and thermomechanically aged groups was significant (P=.010). In the nonaged groups, the heat-pressing technique resulted in a higher retention force than when the specimens were bonded by using the Monobond-Multilink hybrid combination (P=.031). Thermomechanical aging did not significantly affect the results (P>.241). All failures were adhesive, with cement remaining only on the Ti-bases. CONCLUSIONS All bonding protocols tested resulted in a stable bond between PEEK and Ti-bases, as all specimens survived thermomechanical aging. The heat-pressing technique resulted in mean bond strength values similar to those obtained with the tested adhesive system-cement combinations with 1 exception; the nonaged heat-pressed groups presented higher bond strength than the Monobond-Multilink hybrid combination. Failure types indicated that the weaker bond was between the PEEK and the cements tested rather than between the titanium base and the cements, regardless of the adhesive system-cement combination

    Comparison of intraoral and laboratory scanners to an industrial-grade scanner while analyzing the fabrication trueness of polymer and titanium complete-arch implant-supported frameworks.

    Get PDF
    OBJECTIVES To compare the scans of different intraoral scanners (IOSs) and laboratory scanners (LBSs) to those of an industrial-grade optical scanner by measuring deviations of complete-arch implant-supported frameworks from their virtual design file. MATERIAL AND METHODS Ten polyetheretherketone (PEEK) and 10 titanium (Ti) complete-arch implant-supported frameworks were milled from a master standard tessellation language (STL) file. An industrial-grade blue light scanner (AT), 2 LBSs (MT and E4), and 3 IOSs (PS, T3, and T4) were used to generate STL files of these frameworks. All STLs were imported into an analysis software (Geomagic Control X) and overall root mean square (RMS) values were calculated. Marginal surfaces of all STL files were then virtually isolated (Medit Link v 2.4.4) and marginal RMS values were calculated. Deviations in scans of tested scanners were compared with those in scans of AT by using a linear mixed effects model (α=.05). RESULTS When the scans of PEEK frameworks were considered, PS and T3 had similar overall RMS to those of AT (p≄.076). However, E4 and T4 had higher and MT had lower overall RMS than AT (p≀.002) with a maximum estimated mean difference of 13.41 ”m. When the scans of Ti frameworks were considered, AT had significantly lower overall RMS than tested scanners (p≀.010) with a maximum estimated mean difference of 31.35 ”m. Scans of tested scanners led to significantly higher marginal RMS than scans of AT (p≀.006) with a maximum estimated mean difference of 53.90 ”m for PEEK and 40.50 ”m for Ti frameworks. CONCLUSION Only the PEEK framework scans of PS and T3 led to similar overall deviations to those of AT. However, scans of all tested scanners resulted in higher marginal deviations than those of AT scans. CLINICAL SIGNIFICANCE Scans performed by using PS and T3 may be alternatives to those of tested reference industrial scanner AT, for the overall fabrication trueness analysis of complete-arch implant-supported PEEK frameworks

    Effect of printing layer thickness on the trueness of 3-unit interim fixed partial dentures.

    Get PDF
    STATEMENT OF PROBLEM Three-dimensional printing has facilitated the fabrication processes in dentistry. However, knowledge on the effect of layer thickness on the trueness of 3D-printed fixed partial dentures (FPDs) is lacking. PURPOSE The purpose of this in vitro study was to compare the effect of printing layer thickness on the trueness of 3-unit interim FPDs fabricated by using additive manufacturing with that of those fabricated by subtractive manufacturing. MATERIAL AND METHODS The right first premolar and first molar teeth of a dentate mandibular model were prepared for a 3-unit restoration and then digitized by using an intraoral scanner. A 3-unit interim FPD was designed to fabricate 40 restorations by using either the additive (NextDent C&B MFH) with layer thicknesses of 20 ÎŒm (n=10), 50 ÎŒm (n=10), and 100 ÎŒm (n=10) or subtractive manufacturing technique (Upcera) (milled, n=10). After fabrication, the interim FPDs were digitized by using the same intraoral scanner and were superimposed over the design data by using a 3D analysis software program. Root mean square (RMS) was used to analyze the trueness of the restorations at 4 different surfaces (external, intaglio, marginal area, and intaglio occlusal) and as a complete unit (overall). Data were analyzed with the Kruskal-Wallis and Wilcoxon tests with Bonferroni correction (α=.05). RESULTS The 100-ÎŒm-layer thickness interim FPDs showed the greatest overall (P≀.015), external (P≀.021), and intaglio occlusal (P≀.021) deviations, whereas the milled interim FPDs showed the lowest (P=.001). No significant differences were found among the test groups for marginal RMS (P≄.108). The differences between the 50-ÎŒm-layer thickness and 100-ÎŒm-layer thickness interim FPDs for the intaglio surface deviations (P=.064) and between the 20-ÎŒm-layer thickness and 50-ÎŒm-layer thickness interim FPDs for each surface tested were not statistically significant (P≄.108). CONCLUSIONS The printing layer thickness had a significant effect on the trueness of the additively manufactured interim FPDs. However, subtractively manufactured interim FPDs presented higher trueness than those additively manufactured, regardless of the printing layer thickness

    Effect of analysis software program on measured deviations in complete arch, implant-supported framework scans.

    Get PDF
    STATEMENT OF PROBLEM Implementation of fabrication trueness analysis by using a recently introduced nonmetrology-grade freeware program may help clinicians and dental laboratory technicians in their routine practice. However, knowledge of the performance of this freeware program when compared with the International Organization for Standardization recommended metrology-grade analysis software program is limited. PURPOSE The purpose of this in vitro study was to evaluate the effect of an analysis software program on measured deviations in the complete arch, implant-supported framework scans. MATERIAL AND METHODS A total of 20 complete arch, implant-supported frameworks were fabricated from a master standard tessellation language (STL) file from either polyetheretherketone (PEEK) or titanium (Ti) (n=10). All frameworks were then digitized by using different scanners to generate test STLs. All STL files were imported into a nonmetrology-grade freeware program (Medit Link) and a metrology-grade software program (Geomagic Control X) to measure the overall and marginal deviations of frameworks from the master STL file by using the root mean square (RMS) method. Data were analyzed by using the two 1-sided paired t test procedure, in which 50 ”m was considered as the minimal clinically meaningful difference (α=.05). RESULTS When overall RMS values were considered, the nonmetrology-grade freeware program was not inferior to the metrology-grade software program (P.05). CONCLUSIONS The use of the tested nonmetrology-grade freeware program resulted in overall deviation measurements similar to those when a metrology-grade software program was used. The freeware program was inferior when marginal deviations were analyzed on E4 scans of a PEEK framework, which was the only scanner-material pair that led to a significant difference, among the 15 pairs tested

    Excision of sympathetic ganglia and the rami communicantes with histological confirmation offers better early and late outcomes in Video assisted thoracoscopic sympathectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Video-Assisted Thoracoscopic Sympathectomy (VATS) is an established minimally invasive procedure for thoracic sympathetic blockade in patients with hyperhidrosis, facial flushing and intractable angina. Various techniques using clips, diathermy and excision are used to perform sympathectomy. We present our technique of excision of the sympathetic chain with histological proof and the analysis of the early and late outcomes.</p> <p>Methods</p> <p>We evaluated 200 procedures in 100 consecutive patients, who underwent Video Assisted Thoracoscopic Sympathectomy by a single surgeon in our centre between September 1996 to March 2007. All patients had maximum medical therapy prior to surgery and were divided into 3 groups based on indications, Group 1(hyperhidrosis: 48 patients), Group 2 (facial flushing: 26 patients) and Group 3(intractable angina: 26 patients). The demography and severity of symptoms for each group were analysed. The endpoints were success rate, 30 day mortality, complications and patient's satisfaction.</p> <p>Results</p> <p>99 patients had bilateral VATS sympathectomy and 1 had unilateral sympathectomy. The conversion rate to open was 1(1%). All patients had successful removal of ganglia proven histologically with no perioperative mortality in our series. The complications included pneumothorax (5%), acute coronary syndrome (2%), transient Horner's syndrome (1%), transient paraesthesia (1%), wound infection (4%), compensatory hyperhidrosis (18%), residual flushing (3%) and wound pain (5%). There were five late deaths in the intractable angina group at a mean follow up of 36.7 months. Overall success rates of abolishing the symptoms were 96.3%, 87.5% and 95.2% for Group 1, 2 and 3 respectively.</p> <p>Conclusion</p> <p>Excision of the sympathetic chain with histological confirmation during VATS sympathectomy is a safe and effective method in treating hyperhidrosis, facial flushing and intractable angina with good long term results and satisfaction.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
    • 

    corecore