374 research outputs found

    Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs

    Get PDF
    Metabolic changes within the cell and its niche affect cell fate and are involved in many diseases and disorders including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KSHV latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, these miRNAs are responsible for inducing the Warburg effect in infected cells. Here we identify a novel mechanism enabling KSHV to manipulate the metabolic nature of the tumour microenvironment. We demonstrate that KSHV infected cells specifically transfer the virus-encoded microRNAs to surrounding cells via exosomes. This flow of genetic information results in a metabolic shift toward aerobic glycolysis in the surrounding non-infected cells. Importantly, this exosome-mediated metabolic reprogramming of neighbouring cells supports the growth of infected cells, thereby contributing to viral fitness. Finally, our data show that this miRNA transfer-based regulation of cell metabolism is a general mechanism used by other herpesviruses, such as EBV, as well as for the transfer of non-viral onco-miRs. This exosome-based crosstalk provides viruses with a mechanism for non-infectious transfer of genetic material without production of new viral particles, which might expose them to the immune system. We suggest that viruses and cancer cells use this mechanism to shape a specific metabolic niche that will contribute to their fitness

    Detection of Neptune-size planetary candidates with CoRoT data. Comparison with the planet occurrence rate derived from Kepler

    Full text link
    [Abridged] Context. The CoRoT space mission has been searching for transiting planets since the end of December 2006. Aims. We aim to investigate the capability of CoRoT to detect small-size transiting planets in short-period orbits, and to compare the number of CoRoT planets with 2 \leq R_p \leq 4 Rearth with the occurrence rate of small-size planets provided by the distribution of Kepler planetary candidates (Howard et al. 2012). Methods. We performed a test that simulates transits of super-Earths and Neptunes in real CoRoT light curves and searches for them blindly by using the LAM transit detection pipeline. Results. The CoRoT detection rate of planets with radius between 2 and 4 Rearth and orbital period P \leq 20 days is 59% (31%) around stars brighter than r'=14.0 (15.5). By properly taking the CoRoT detection rate for Neptune-size planets and the transit probability into account, we found that according to the Kepler planet occurrence rate, CoRoT should have discovered 12 \pm 2 Neptunes orbiting G and K dwarfs with P \leq 17 days in six observational runs. This estimate must be compared with the validated Neptune CoRoT-24b and five CoRoT planetary candidates in the considered range of planetary radii. We thus found a disagreement with expectations from Kepler at 3 \sigma or 5 \sigma, assuming a blend fraction of 0% (six Neptunes) and 100% (one Neptune) for these candidates. Conclusions. This underabundance of CoRoT Neptunes with respect to Kepler may be due to several reasons. Regardless of the origin of the disagreement, which needs to be investigated in more detail, the noticeable deficiency of CoRoT Neptunes at short orbital periods seems to indirectly support the general trend found in Kepler data, i.e. that the frequency of small-size planets increases with increasing orbital periods and decreasing planet radii.Comment: 10 pages, 7 figures. Accepted for publication in A&

    Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26

    Get PDF
    HDM2 is a p53-specific E3 ubiquitin ligase. Its overexpression leads to excessive inactivation of tumor protein p53, diminishing its tumor suppressor function. HDM2 also affects the cell cycle, apoptosis and tumorigenesis through interacting with other molecules, including several ribosomal proteins. To identify novel HDM2 regulators, we performed a yeast two-hybrid screening using HDM2 as bait. Among the candidates, ribosomal protein L26 (RPL26) was characterized as a novel HDM2-interactor. The interaction between HDM2 and RPL26 was further validated by in vivo and in vitro assays. RPL26 modulates the HDM2–p53 interaction by forming a ternary complex among RPL26, HDM2 and p53, which stabilize p53 through inhibiting the ubiquitin ligase activity of HDM2. The ribosomal stress caused by a low dose of Act D enhances RPL26–HDM2 interaction and activates p53. Overexpression of RPL26 results in activating of p53, inhibits cell proliferation and induces a p53-dependent cell cycle arrest. These results provide a novel regulatory mechanism of RPL26 to activate p53 by inhibiting HDM2

    Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses

    Get PDF
    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components

    The use of ultrasound to assess fetal growth in a guinea pig model of fetal growth restriction

    Get PDF
    Fetal growth restriction (FGR) is a common and potentially severe pregnancy complication. Currently there is no treatment available. The guinea pig is an attractive model of human pregnancy as placentation is morphologically very similar between the species. Nutrient restriction of the dam creates growth-restricted fetuses while leaving an intact uteroplacental circulation, vital for evaluating novel therapies for FGR. Growth-restricted fetuses were generated by feeding Dunkin Hartley guinea pig dams 70% of ad libitum intake from four weeks before and throughout pregnancy. The effect of maternal nutrient restriction (MNR) on dams and fetuses was carefully monitored, and ultrasound measurements of pups collected. There was no difference in maternal weight at conception, however by five weeks post conception MNR dams were significantly lighter (P < 0.05). MNR resulted in significantly smaller pup size from 0.6-0.66 gestation. Ultrasound is a powerful non-invasive tool for assessing the effect of therapeutic interventions on fetal growth, allowing longitudinal measurement of fetuses. This model and method yield data applicable to the human condition without the need for animal sacrifice and will be useful in the translation of therapies for FGR into the clinic

    The EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit

    Get PDF
    This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 +/- 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects orbit in planes that appear aligned with their primaries' equatorial planes. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass--radius relationship, whereas WASP-30b lies above it.Comment: 12 pages, 7 figures, data in appendices, submitted to A&A (taking in account 1st referee report

    A Moving Magnetic Trap Decelerator: a New Source for Cold Atoms and Molecules

    Full text link
    We present an experimental realization of a moving magnetic trap decelerator, where paramagnetic particles entrained in a cold supersonic beam are decelerated in a co-moving magnetic trap. Our method allows for an efficient slowing of both paramagnetic atoms and molecules to near stopping velocities. We show that under realistic conditions we will be able to trap and decelerate a large fraction of the initial supersonic beam. We present our first results on deceleration in a moving magnetic trap by bringing metastable neon atoms to near rest. Our estimated phase space volume occupied by decelerated particles at final velocity of 50 m/s shows an improvement of two orders of magnitude as compared to currently available deceleration techniques

    Modeling the Basal Dynamics of P53 System

    Get PDF
    The tumor suppressor p53 has become one of most investigated genes. Once activated by stress, p53 leads to cellular responses such as cell cycle arrest and apoptosis.Most previous models have ignored the basal dynamics of p53 under nonstressed conditions. To explore the basal dynamics of p53, we constructed a stochastic delay model by incorporating two negative feedback loops. We found that protein distribution of p53 under nonstressed condition is highly skewed with a fraction of cells showing high p53 levels comparable to those observed under stressed conditions. Under nonstressed conditions, asynchronous and spontaneous p53 pulses are triggered by basal DNA double strand breaks produced during normal cell cycle progression. The first peaking times show a predominant G1 distribution while the second ones are more widely distributed. The spontaneous pulses are triggered by an excitable mechanism. Once initiated, the amplitude and duration of pulses remain unchanged. Furthermore, the spontaneous pulses are filtered by ataxia telangiectasia mutated protein mediated posttranslational modifications and do not result in substantial p21 transcription. If challenged by externally severe DNA damage, cells generate synchronous p53 pulses and induce significantly high levels of p21. The high expression of p21 can also be partially induced by lowering the deacetylation rate.Our results demonstrated that the dynamics of p53 under nonstressed conditions is initiated by an excitable mechanism and cells become fully responsive only when cells are confronted with severe damage. These findings advance our understanding of the mechanism of p53 pulses and unlock many opportunities to p53-based therapy

    Wses Guidelines For The Management Of Acute Left Sided Colonic Diverticulitis In The Emergency Setting

    Get PDF
    Acute left sided colonic diverticulitis is one of the most common clinical conditions encountered by surgeons in acute setting. A World Society of Emergency Surgery (WSES) Consensus Conference on acute diverticulitis was held during the 3rd World Congress of the WSES in Jerusalem, Israel, on July 7th, 2015. During this consensus conference the guidelines for the management of acute left sided colonic diverticulitis in the emergency setting were presented and discussed. This document represents the executive summary of the final guidelines approved by the consensus conference.1
    corecore