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Abstract

Metabolic changes within the cell and its niche affect cell fate and are involved in many dis-

eases and disorders including cancer and viral infections. Kaposi’s sarcoma-associated her-

pesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS). KSHV latently infected

cells express only a subset of viral genes, mainly located within the latency-associated

region, among them 12 microRNAs. Notably, these miRNAs are responsible for inducing

the Warburg effect in infected cells. Here we identify a novel mechanism enabling KSHV to

manipulate the metabolic nature of the tumour microenvironment. We demonstrate that

KSHV infected cells specifically transfer the virus-encoded microRNAs to surrounding cells

via exosomes. This flow of genetic information results in a metabolic shift toward aerobic

glycolysis in the surrounding non-infected cells. Importantly, this exosome-mediated meta-

bolic reprogramming of neighbouring cells supports the growth of infected cells, thereby

contributing to viral fitness. Finally, our data show that this miRNA transfer-based regulation

of cell metabolism is a general mechanism used by other herpesviruses, such as EBV, as

well as for the transfer of non-viral onco-miRs. This exosome-based crosstalk provides

viruses with a mechanism for non-infectious transfer of genetic material without production

of new viral particles, which might expose them to the immune system. We suggest that

viruses and cancer cells use this mechanism to shape a specific metabolic niche that will

contribute to their fitness.

Author summary

The metabolic state within a cell and its local environment is altered in many diseases and

disorders including those caused by viral infections. The gamma-herpesviruses Kaposi’s

Sarcoma Associated Herpesvirus (KSHV) is a viral agent associated with a large number

of human malignancies. KSHV was shown to manipulate the metabolism of host cells and
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to induce similar metabolic changes to those found in non-viral cancers. Our work dem-

onstrates that KSHV not only regulates host cell metabolism, but also alters the metabo-

lism of neighbouring non-infected cells. We report that exosomes secreted from KSHV-

infected cells selectively transfer the viral miRNAs into neighbouring cells. While these

cells remain uninfected, the viral miRNAs are active in them to induce the Warburg effect.

Moreover, our data show that this exosomal transfer of miRNAs transforms the exosome-

recipient cells into ‘feeder cells’ producing a microenvironment that is more supportive

for host cell growth. Finally, we found that this flow of genetic information increases the

angiogenic potential of non-infected cells and therefore, could further enrich the infected

cell microenvironment to support their fitness. This previously undescribed mechanism

provides important insight into cancer and viral pathology and suggests new avenues for

therapeutic intervention.

Introduction

Altered metabolism is regarded as a hallmark of cancer. It is thought that cancer cells rewire

metabolic pathways in such a way that biosynthetic processes are balanced against ATP pro-

duction to support high rates of proliferation [1]. One of the most characteristic metabolic

hallmarks of tumour metabolism is aerobic glycolysis. Despite the inefficiency of glycolysis in

energy production, the glycolytic phenotype provides cancer cells with several advantages such

as increased biosynthesis of intermediate macromolecules and anti-apoptosis and signalling

through metabolites [2]. Recently, it has been suggested that cancer cells, in addition to their

intrinsic metabolic alteration can also induce aerobic glycolysis in adjacent stromal cells, a

phenomenon termed the ‘reverse Warburg Effect’ [3, 4]. The reverse Warburg effect empha-

sises the importance of tumour stromal cells in supplying energy metabolites and chemical

building blocks to the rapidly proliferating cancer cells.

Oncogenic viruses cause more than 15% of human cancers and it is predicted that effective

treatment against them will lead to 25% fewer cancers in developing countries and 7% in

developed countries [5]. Pathogenicity of these viruses involves the hijacking of host cellular

pathways, including those controlling cell metabolism, suggesting they can use as a model sys-

tem to study cancer development.

Kaposi’s sarcoma herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS) and

certain lymphoid neoplasms. KS is the most common neoplasm in HIV-1-infected individuals

and also induces significant morbidity in other immunosuppressed individuals (e.g., post

organ transplantation) and in populations where KSHV infection is endemic (para-Mediterra-

nean regions) [6]. To date KSHV infection does not have an effective treatment and new thera-

peutic approaches are needed. KS cells, as other cancers, have a distinct metabolism and

KSHV was shown to alter several metabolic pathways in its host cell [7–10]. We have recently

shown that the KSHV-encoded microRNAs (miRNAs) induce aerobic glycolysis in infected

cells through regulation of key cellular genes involved in mitochondrial activity and regulation

of glucose metabolism [11]. Interestingly, interaction between KSHV infected cells and their

microenvironment was shown to be important for primary effusion lymphoma growth in vivo
[12]. It was recently shown that the KSHV miRNAs are present in exosomes isolated from KS

patient and KS mouse model [13] but the role of this in KS biology is still unknown. We sug-

gest that exosomes present a new possible platform allowing KSHV in infected cells to interact

with their microenvironment and improve its host cell fitness.
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Exosomes are spherical structures sealed with membranes released from the endosomal

compartment of most cell types. They vary in size and molecular composition, depending on

the cell of origin [14]. The functional impact of exosomes is imparted by the molecular compo-

nents (protein and RNA cargo) they carry [15]. Exosome uptake is thought potentially to

modulate many physiological and pathological processes including cell growth, immune regu-

lation, angiogenesis and metastasis [16, 17]. Exosomes uptake was also shown to affect metabo-

lism; exosomes secreted from cancer associated fibroblast were suggested to modulate cancer

cells metabolism by transferring miRNAs and metabolites [18], and breast cancer secreted exo-

somes were shown to reduce glucose metabolism in cells in the pre-metastatic niche by trans-

ferring miR-122 [19]. Interestingly, it has been suggested that viruses, including KSHV,

modulate the secretion of exosomes from infected cells [13, 20–22].

Here we have used KSHV infection as a model to study whether cells utilise the exosomal

pathway to regulate the metabolism of their microenvironment. We show that KSHV-infected

primary lymphatic endothelial cells secrete exosomes containing viral-encoded miRNAs.

These exosomes transfer the miRNAs to surrounding uninfected cells to induce a reverse War-

burg effect. We show that these miRNAs function in the recipient cells to regulate known tar-

get genes and this results in reduced mitochondria biogenesis and induction of aerobic

glycolysis. Most importantly, we found that this metabolic cross-talk between infected and

neighbouring non-infected cells has physiological implications in KSHV life cycle supporting

the growth of latent infected cells. Finally, our results show that regulation of microenviron-

ment metabolism by miRNA transfer might be a global mechanism used by other viruses and

cancer cells.

Taken together our results reveal a novel mechanism whereby virally infected cells and can-

cer cells regulate the metabolism of surrounding cells via miRNA transfer. This allows these

cells to control their microenvironment without producing new viral particles, which might

trigger host immune recognition.

Results

Exosomes secreted from KSHV-infected cells contain viral miRNAs

KSHV miRNAs regulate mitochondria and glucose metabolism in infected cells [11]. In addi-

tion, it has been demonstrated that patient- and mouse model-derived exosomes carry in them

the KSHV miRNAs [13]. We hypothesised, therefore, that KSHV modulates exosomes secre-

tion to regulate the metabolism of neighbouring cells.

We test our hypothesis in lymphatic endothelial cells (LEC), the precursor cells for KS. We

infected primary LEC with BAC16-derived WT KSHV (KLEC) or miRNA cluster-deleted

KSHV (ΔmiR-KLEC) [23]. Cells were selected to produce a 100% infected population and cul-

tured for 6 days to allow establishment of latency (Fig 1A and S1A Fig). Post selection, both

KLEC and ΔmiR-KLEC were found to have similar KSHV genome copy number (S1B Fig)

and expression levels of other latent genes (S1C Fig). Growth media was then collected every

48 hours for a period of 14 days after each infection and extracellular vesicles were purified by

standard differential centrifugation from 150ml of media (S1D Fig). To determine if these

nano-vesicles are exosomes we performed imaging, particle sizing, and measured biochemical

properties of purified vesicles released from infected and non-infected LEC. Size and popula-

tion characterisation using NanoSight Nanoparticle Tracking Analysis technology measured

particles with diameter distribution between 50-150nm, corresponding to the expected size of

exosomes (S1E Fig). This analysis also showed that 150ml of growth media contains between

2-3x1011 particles/ml (S1F Fig). Purity of the exosome preparations was determined by both
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electron microscopy (Fig 1B) and immunoblot analysis for the known exosome markers

CD63, CD9 and ALIX (Fig 1C and S1G Fig).

Because our hypothesis is a non-cell autonomous regulation on cell metabolism, we con-

firmed that our purified exosomes are not contaminated with KSHV particles. Immunoblot

analysis showed no detectable KSHV envelope-associated protein ORF8 in the purified exo-

some fraction (Fig 1D, bottom panel, 3 left lanes) and no viral particles were identified by elec-

tron microscopy. As expected, CD63 can be detected also in the KSHV sample (Fig 1D, top

panel, last lane) since it is collected from the media of activated cells using high speed centrifu-

gation. Finally, after incubation with purified exosomes, we could not detect the KSHV DNA

in uninfected cells, and these cells did not become GFP positive nor kanamycin resistant, as

would be expected had they become infected with the recombinant virus. Taken together, we

concluded that the purified exosome fraction is KSHV free and therefore any effect this frac-

tion has, is not due to de novo KSHV infection.

To test whether the KSHV miRNAs are present in secreted exosomes, RNA was extracted

from LEC-, KLEC- and ΔmiR-KLEC-derived exosomes. To ascertain that the RNA is pro-

tected within the vesicles, exosomes were treated with 0.4μg/μl RNase for 10 min at 37˚C prior

to RNA extraction [24]. qRT-PCR analysis using the KSHV-miR LNA PCR primer sets

Fig 1. Characterisation of exosomes secreted from KLEC. (A) Schematic illustration of the procedure used in this study to collect

exosomes from KLEC. (B) Exosomes were purified from KLEC and LEC growth media and analysed by electron microscopy (TEM).

Representative image of exosomes from KLEC is shown. (C) Lysates from purified exosomes or whole cells were separated by SDS/PAGE

and analysed by immunoblot for expression of the exosomal marker CD63. (D) Lysates from purified exosomes or KSHV (10μg) were

separated by SDS/PAGE and analysed by immunoblot for expression of the exosomal marker CD63 (top panel) and the viral protein ORF8

(bottom panel). (E) Percentage of the viral miRNAs reads from the total reads detected. (F) Expression levels of selective KSHV miRNAs in

KLEC and KLEC-derived exosomes. The expression level was calculated as fraction of total reads detected in KLEC and KLEC-derived

exosomes. Both graphs present the mean and standard error of 3 biological repeats.

https://doi.org/10.1371/journal.ppat.1006524.g001
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(Exiqon), showed all 12 KSHV encoded miRNAs are present in KLEC derived exosomes (S1H

Fig). Importantly, using these primer sets we could not detect any signal for RNA extracted

from exosomes derived from LEC. Similarly, we could only detect miR-K12-10 and miR-K12-

12, which are encoded out of the miR-cluster, in exosomes derived from ΔmiR-KLEC (S1I

Fig). To better quantify the viral miRNAs in these exosomes as well as the effect of KSHV

infection on transfer of cellular miRNAs in exosomes, we sequenced the small RNAs from

LEC and KLEC as well as from exosomes secreted from these cells. We detected around 1800

different miRNAs in LEC and KLEC and around 1200 miRNAs in exosomes secreted from

these cells. Importantly, we found that while in KLEC, the viral miRNAs present around 5% of

the total miRNAs reads, in exosomes secreted from them, these miRNAs are responsible for

around 10% of the total miRNAs reads (Fig 1E). In addition, we found differences in the

expression profile of the viral miRNAs between the cells and exosomes. For example, KSHV

miR-K12-10a-3p, K12-4-3p and K12-8-3p are over represented in the exosomes while KSHV

miR-K12-11-3p and K12-4-5p are underrepresented (Fig 1F and S1 Table). Moreover, specific

cellular miRNAs that are over represented in KLEC compared to LEC such as miR-145-5p and

143-3p (S2 Table), were not found to be enriched in KLEC-derived exosomes (S3 Table). On

the other hand, we identified cellular miRNAs which are enriched in KLEC-derived exosomes

compared to LEC-derived exosomes although these are not enriched in the respective cells (S2

and S3 Tables). For example, hsa-miR-216a is highly enriched in KLEC derived exosomes.

miR-216a was suggested to function as an oncomiR and to induce epithelial-mesenchymal

transition (EMT) by targeting PTEN and SMAD7 [25]. This suggests that transfer of human

miRNAs in exosomes secreted from KSHV infected cells may play an additional role in KSHV

pathogenicity. Taken together these results suggest that KSHV manipulates its host cells secre-

tion system to selectively enrich the packaging of the viral miRNAs together with specific cellu-

lar miRNAs in exosomes secreted from infected cells.

KSHV miRNAs are transferred to non-infected cells, where they are

active

Having established the presence of KSHV miRNAs in exosomes we sought to explore their

trafficking and more importantly, biological function. We initially tested whether exosomes

secreted from KLEC are taken up by non-infected LEC, by labelling internal protein in puri-

fied exosomes using the Exo-Green (System Bioscience). Untreated LEC were first labelled

using CellMask Deep Red Plasma Membrane Stain (molecular probes), then incubated with

labelled exosomes and analysed using confocal microscopy. As shown in Fig 2B, upon incuba-

tion with labelled exosomes, GFP signal can be detected within the cells, indicating uptake of

these exosomes. Flow cytometry analysis of these cells showed that positive staining is still

detectable 24 hours’ post uptake by target cells (S2A Fig). Importantly, uptake of KLEC-

derived exosomes results in transfer of the viral miRNAs to these cells (Fig 2C).

miRNAs function by binding to their target genes to inhibit their translation and induce

their mRNA degradation. Therefore, we next tested if the KSHV miRNAs are active in the

cytosol of recipient cells to inhibit the expression of known target genes. We have previously

shown that the KSHV miRNAs function as cluster to regulate EGLN2 and HSPA9 and induce

aerobic glycolysis [11]. We inserted the 3’ UTRs of these genes downstream of a luciferase cod-

ing sequence to generate a reporter of KSHV miRNA activity. Cells expressing this reporter

were incubated with exosomes, secreted from LEC or KLEC for 48 hours (1x109 particles).

Incubation with KLEC-derived exosomes resulted in a ~25–30% reduction in luciferase activ-

ity relative to cells incubated with control LEC-secreted exosomes (Fig 2D). To further confirm

the activity of the KSHV miRNAs in receptive cells we specifically tested the activity of
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miR-K12-10, which is expressed separately from the other miRNAs, using blue fluorescent

protein (BFP) fused to 8 repeats of the miRNA target site. When these cells were incubated

with KLEC-secreted exosomes, we found a ~25% reduction in BFP intensity compared to

incubation with exosomes secreted from LEC (Fig 2E). To further test if these KLEC-derived

exosomes regulate the expression of these genes under more physiological exosomes-transfer

conditions we used Transwell plates [26] to co-culture non-infected LEC (bottom compart-

ment) with either ΔmiR-KLEC or KLEC (upper compartment). We then analysed the RNA

Fig 2. KSHV miRNAs are transferred via exosomes to naive cells to regulate gene expression. (A) Schematic illustration of exosomes

education—105 non-infected cells were incubated for total of 48 hours when 2.5x109 exosomes were added every 24 hours. (B) KLEC

exosomes are being taken up by naive LEC. LEC were first stained using CellMask deep red, then incubated with GFP labelled exosomes and

analysed using a confocal microscope. (C) LEC were educated using 2.5x109 KLEC-derived exosomes and tested for the presence of the

mature KSHV miRNAs using the KSHV-miR LNA PCR primer sets (Exiqon) relative to the ribosomal RNA S5. (D) Reporter assay indicating

the sensitivity of the EGLN2 or HSPA9 3’UTRs to targeting by the KSHV miRNAs. Cells expressing the reporter vectors were educated using

LEC or KLEC-derived exosomes and analysed for luciferase activity. Firefly expression of each sample was internally normalized to Renilla

expression to give the relative light units (RLU), which are presented relative to cells educated using LEC exosomes. (E) Reporter assay

indicating miR-K12-10 is active in recipient cells. Cells expressing a blue fluorescent protein (BFP) fused to 8 repeats of the miR-K12-10

targeting sequence were educated using LEC or KLEC-derived exosomes and analysed for BFP expression by fluorescence-activated cell

sorter (FACS). (F) Relative mRNA levels of EGLN2 and HSPA9 in LEC educated using KLEC-derived exosomes compared to LEC educated

using ΔmiR-KLEC-derived exosomes. mRNA levels were determined by qRT-PCR. TUBB levels were used for normalisation. All panels

present the mean and standard deviation of 3 biological repeats. Statistical significance was denoted by *P < .05, **P < .01, ***P < .001.

https://doi.org/10.1371/journal.ppat.1006524.g002
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from the non-infected LEC and found 30% and 40% down regulation of EGLN2 and HSPA9

mRNAs levels respectively (Fig 2F). Taken together these results show that the KSHV encoded

miRNAs are transferred to non-infected cells and maintain their ability to down-regulate spe-

cific target genes.

Transfer of KSHV miRNAs via exosomes induces a reverse Warburg

effect

We have previously shown that the KSHV miRNAs induce aerobic glycolysis in infected cells.

We therefore predicted that they would have a similar effect in exosome recipient cells. To test

this hypothesis, we educated non-infected LEC by either growing them in the presence of iso-

lated exosomes for 48 hours (Fig 3A) or by co-culturing them with infected cells using Trans-

well plates (Fig 3B). We first measured the oxygen consumption rate of educated LEC using

the Seahorse XF24 Analyzer. The Seahorse Extracellular Flux Analyzer determines oxygen

consumption rate (OCR) and extracellular acidification rate (ECAR), in order to assess cellular

functions such as oxidative phosphorylation and glycolysis. We educated non-infected cells

with increasing numbers of exosomes and found a dose dependent reduction in oxygen con-

sumption of educated cells with maximal effect using 2.5x109 exosomes (S3A Fig). We there-

fore decided to use this number of exosomes for cell education for all future experiments.

Education using KLEC-derived exosomes reduced the baseline oxygen consumption in

recipient cells by ~30% compared to education using LEC-derived exosomes (Fig 3C and S3A

Fig). Importantly, exosomes derived from ΔmiR-KLEC did not affect oxygen consumption

(Fig 3C), suggesting the viral miRNAs are the driving force behind this phenotype. Similarly,

after co-culturing KLEC and LEC for 5 days, LEC were found to have reduced oxygen con-

sumption compared to uneducated LEC (S3B Fig). This suggests that transfer of the KSHV

miRNAs into non-infected cells reduces mitochondrial respiration. Similarly, we also observed

a 30% increase in glucose uptake, consistent with increased aerobic glycolysis (Fig 3D). Mito-

chondria are key players in normal glucose metabolism during aerobic conditions and as part

of the Warburg effect, many cancer types show altered mitochondrial activity [27]. Since we

have previously shown that expression of the KSHV-encoded miRNAs reduces mitochondria

biogenesis [11], we tested whether KLEC-derived exosomes have a similar effect on mitochon-

drial volume by loading cells with MitoTracker together with Calcein AM. MitoTracker is a

fluorescent dye that labels mitochondria within live cells utilising the mitochondrial mem-

brane potential. It therefore allowed us to calculate mitochondrial volume (MitoTracker stain-

ing) relative to total cell volume (Calcein staining) (Fig 3E). Upon incubation with KLEC-

derived exosomes we found a ~40% decrease in mitochondria volume in educated cells com-

pared to cells incubated with LEC derived exosomes (Fig 3F). Importantly, we did not detect

any significant difference between cells educated using LEC- and ΔmiR-KLEC-derived exo-

somes, strengthening our notion that the KSHV encoded miRNAs are responsible for this

phenotype. The hypoxia-induced factor alpha (HIF1α) is a known regulator of glucose metab-

olism [28, 29] and can mediate the Warburg effect in cancer cells [30]. KSHV has been shown

to activate HIF1α and HIF2α during latency [31] and we have observed that expression of

KSHV miRNAs induces HIF1α stabilisation [11]. As shown in Fig 3G, HIF1α expression was

increased in cells educated using KLEC-derived exosomes compared to those educated using

LEC- or ΔmiR-KLEC-derived exosomes. To further characterise the metabolic effect induced

by exosomes secreted from KSHV infected cells, we performed targeted quantitative analysis

using capillary electrophoresis mass spectrometry (CE-MS). This analysis showed significant

increase in lactate and pyruvate as well as decrease levels of TCA cycle metabolites and ATP, in
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cells educated by KLEC derived exosomes (Fig 3H and 3I and S3C Fig), supporting our notion

that these exosomes reduce mitochondrial activity in educated cells.

Importantly, when educated cells were grown for additional 5 days without exosomes, the

metabolic phenotype was reversed and their oxygen consumption was comparable to that of

untreated LEC (S3D Fig). This supports our notion that these cells are not infected by KSHV

and that this phenotype depends on constant transfer of miRNAs from infected cells.

Finally, we tested whether exosomes secreted from KLEC have the same metabolic effect

on other cell types relevant to KS. Education of Human Umbilical Vein Endothelial Cells

Fig 3. KLEC-derived exosomes induce the reverse Warburg effect. (A-B) Schematic illustration of exosome education. 105 non-infected cells

were incubated for total of 48 hours when 2.5x109 exosomes were added every 24 hours (A) or co-cultured for 5 days with 105 of the indicated cell

in Transwell plates (B). (C-G) 105 cells were educated using 2.5x109 of the indicated exosomes and analysed for the following metrics: (C)

Oxygen consumption rate (OCR) as measured using the Seahorse XF24 Analyser. Cells were seeded at a density of 4x104 cells per well

and the assay was performed according to the manufacturer’s Mito stress protocol. The bar graph presents the average base line OCR from 3

independent experiments relative to non-targeting control OCR (mean+SD, n = 3). (D) Glucose uptake as measured by uptake of the fluorescent

glucose analogue 6-NBDG. Cells were incubated with 30 μM of 6-NBDG for 20 minutes prior to analysis by fluorescence-activated cell sorter

(FACS). The histogram displays one representative experiment. (E-F) Mitochondria volume—Cells were loaded with 5μM Calcein-AM and 5nM

MitoTracker Deep Red FM and optical z-series were captured. Maximal projections of images were used to quantify the area of green (Calcein)

and red (MitoTracker Deep Red) signals as previously described [11]. Representative single-plane images of the mitochondrial structure are

shown on the left panel (E). The bar graph presents the average mitochondrial volume in cells from 3 different experiments (at least 10 fields per

experiment) (F). (G) HIF1α protein expression, as measured by immunoblot. (H-I) Lactic acid (H) and pyruvic acid (I) concentrations as measured

in educated cells using CE-TOFMS and CE-QqQMS (Human Metabolome Technologies, Inc.). All panels present the mean and standard

deviation of 3 biological repeats. Statistical significance was denoted by *P < .05, **P < .01, ***P < .001.

https://doi.org/10.1371/journal.ppat.1006524.g003
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(HUVEC), with exosomes extracted from KLEC induced aerobic glycolysis, as shown by

reduced oxygen consumption and mitochondria volume (S3E and S3F Fig).

Taken together these results suggest that transfer of the KSHV miRNAs via exosomes

induces aerobic glycolysis, reduces mitochondria biogenesis and leads to HIF1α stabilisation

in surrounding non-infected cells.

Exosomes secreted from EBV infected cells reduce mitochondrial

respiration

Many viruses other than KSHV express miRNAs, and we speculated that miRNA transfer via

exosomes might be a general mechanism used by viruses to regulate their microenvironment.

Epstein Barr Virus (EBV) is a human gamma herpes virus which, like KSHV, is the etiological

agent for several lymphoid malignancies [32]. EBV encodes at least 40 miRNAs, which were

shown to be present in exosomes secreted from EBV transform cells [21, 33]. The EBV

encoded miRNAs are thought to have many target genes in common with KSHV [34–36] and

EBV-miR-BART1 has been suggested to regulate metabolism-associated genes [37]. To test

whether exosomes secreted from EBV infected cells have similar effect to those secreted from

KSHV infected cells, we collected exosomes from the growth media of EBV positive and nega-

tive AKATA cell lines (S4A and S4B Fig). We have found that EBV-encoded miRNAs were

present in only exosomes secreted by the EBV positive AKATA cells (Fig 4A). Educating

human fibroblasts using these exosomes for 48 hours resulted in a 25% decrease in oxygen

consumption (Fig 4B), stabilisation of HIF1α (Fig 4C and 4D) and expression of its target gene

VEGFA (Fig 4E). This suggests EBV can also use exosomes to alter its microenvironment

metabolism in a similar way to KSHV.

The hypoxia-induced miR-210 can be transferred in exosomes to

regulate microenvironment metabolism

Regulating energy metabolism using miRNAs is not exclusive to viruses, and many cellular

miRNAs are also known to control energy metabolism [38]. miR-210, for example, is known

to regulate cell metabolism, is associated with mitochondrial defects and glycolytic phenotype

[39–41], and was suggested to be secreted in exosomes under hypoxic conditions [42]. To test

if miR-210 can be transferred in exosomes to alter the metabolism of cells within the microen-

vironment we forced the expression of miR-210 in HEK293T and HCT116 cell lines. Exo-

somes secreted from these cells had much higher levels of miR-210 compared to exosomes

derived from cells infected with a control vector (S5A Fig). miR-210 directly targets the iron-

sulphur assembly proteins ISCU1/2 [43]. To test if miR-210 can be transferred in exosomes

and be active in recipient cells, we tested ISCU1 mRNA levels in human fibroblasts, educated

using exosomes secreted from control or miR-210 over expressing cells. Education using exo-

somes contain high levels of miR-210 leads to a ~50% decrease of ISCU1 mRNA levels (S5B

Fig). Importantly, these educated cells also reduced their oxygen consumption by 30–40%

(S5C Fig).

Taken together these results suggest that transfer of miRNAs via exosomes is a general

mechanism that can be used by cells in a variety of pathological contexts to regulate the metab-

olism of cells in their microenvironment.

Glycolytic cells are less sensitive to KSHV infection

How might metabolic transformation of the microenvironment enhance the fitness of KSHV?

One possibility is that it sensitises surrounding cells to viral infection. To test this, we infected
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different educated cells with KSHV (Fig 5A). Contrary to our expectations we observed a 50%

decrease in infection of cells educated using KLEC-derived exosomes compared to those edu-

cated using LEC exosomes (Fig 5B). Similarly, DNA analysis of cell educated using KLEC and

ΔmiR-KLEC exosomes showed a similar decrease in the viral copy number in cells educated

using KLEC derived exosomes (Fig 5C). To test whether this unexpected effect is due to the

metabolic changes induced by these exosomes, we mimicked the exosome metabolic effect by

expressing the HIF1α P402A/P564A stable mutant [44] in LEC (Fig 5D). Over-expression of

HIF1α had a similar effect to exosome treatment, leading to a 40% reduction in the viral copy

number 48 hours’ post KSHV infection (Fig 5E). Thus, it appears that aerobic glycolysis inhib-

its KSHV infection, and that exosomes secreted from infected cells in fact prevent KSHV

spreading into new cells.

Inducing reverse Warburg effect supports KLEC growth

The fact that uptake of exosomes secreted from LEC reduces viral spreading suggests other

benefit for the virus. It has been suggested that the reverse Warburg effect in stromal cells sup-

ports growth of cancer cells [3, 4]. We therefore hypothesised that inducing aerobic glycolysis

in nearby non-infected cells supports the growth of KSHV-infected cells. To test this hypothe-

sis, we co-cultured KLEC in Transwell plates with HUVEC educated with different exosomes

(Fig 5F). We found that growing in the presence of cell per-educated with KLEC derived exo-

somes, promoted KLEC growth by ~40% compared to growing in the presence of cells edu-

cated with exosomes from ΔmiR-KLEC (Fig 5G). HUVEC over-expressing stable mutant

Fig 4. Exosomes secreted from EBV infected cells transfer the virus miRNAs and induce reverse Warburg effect. (A) Expression of

4 mature EBV miRNAs in exosomes purified from AKATA growth media. Detection of the mature EBV miRNAs was performed using the

EBV-miR LNA PCR primer sets (Exiqon). (B-C) Oxygen consumption rate (OCR) as measured using the Seahorse XF24 Analyser. 105

human fibroblasts cells were educated using 2.5x109 of the indicated exosomes. Cells were seeded at a density of 4x104 cells per well and

the assay was performed according to the manufacturer’s Mito stress protocol. Representative Mito stress assay of the mitochondrial

structure is shown on the left panel (B). The bar graph presents the average basal oxygen consumption of 3 biological repeats (C). (D-E)

HIF1α protein expression, in human fibroblasts cells educated using the indicated exosomes, as measured by immunoblot (D). The bar

graph presents the average relative expression in 3 independent experiments (E). (F) Expression of the HIF1α target gene VEGFA. mRNA

levels were determined by quantitative real-time PCR (qRT-PCR). Tubulin beta (TUBB) levels were used for normalisation. In all panels,

except to panel B, the graphs present the mean and standard deviation of 3 biological repeats. Statistical significance was denoted by *P <
.05, **P < .01, ***P < .001.

https://doi.org/10.1371/journal.ppat.1006524.g004
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HIF1α had a similar effect on KLEC growth (Fig 5H), supporting the notion that this increased

growth is indeed due to the reverse Warburg effect.

In cancer models, the reverse Warburg effect is thought to support cancer cell growth by

promoting the secretion of energy-rich metabolites such as lactate and pyruvate from non-

cancerous neighbours. These metabolites are taken up by the cancer cells and used in the mito-

chondrial TCA cycle, thereby promoting efficient energy production and higher proliferative

Fig 5. Inducing the reverse Warburg effect inhibits KSHV infection and supports KLEC growth. (A) Schematic illustration of the

procedure used in this study to infect educated cells. 105 non-infected cells were incubated for total of 48 hours when 2.5x109 exosomes were

added every 24 hours, and infected with BAC16-derived WT KSHV. Cells were analysed 48 hours’ post KSHV infection. (B) Percentage of

infected cells after education using LEC or KLEC exosomes. Cells were analysed using flow cytometry. (C) KSHV genome copy number in

LEC educated using KLEC and ΔmiR-KLEC exosomes, 48 hours post KSHV infection. qPCR was carried out as previously described [61]. (D)

Expression of HIF1α in LEC expressing the HIF1α P402A/P564A mutant. Lysates from cell infected with empty vector (EV), mutant or WT

HIF1αwere separated by SDS/PAGE and analysed by immunoblot for expression of HIF1α. (E) LEC expressing WT and mut-HIF1αwere

infected with BAC16-derived WT KSHV and examined for KSHV genome copy number using qPCR. (F) Schematic illustration of the

procedure used in this study to co-culture KLEC with educated cells. 105 HUVEC cells were incubated for total of 48 hours when 2.5x109

exosomes were added every 24 hours. 105 of the educated cells were washed, trypsinized and then co-cultured with 105 KLEC in Transwell

plates for 2 days. (G) KLEC growth in the presence of educated HUVEC. KLEC were trypsinised and each condition was counted using both

hemocytometer and the Millipore Scepter 2.0 Handheld Automated Cell Counter. (H) KLEC growth in the presence of HUVEC over-expressing

HIF1α. The indicated cells were co-cultured and counted as described in (G). (I) KLEC media was supplemented with 1.5 or 10mM sodium

L-Lactate. Cell number was measured using the CellTiter-Fluor assay (promega) after 24 and 48 hours. All bar graphs present the mean and

standard deviation of 3 biological repeats. Statistical significance was denoted by *P < .05, **P < .01, ***P < .001.

https://doi.org/10.1371/journal.ppat.1006524.g005
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capacity [3]. Since we have found that uptake of exosomes secreted from KLEC leads to

increased levels of lactate and pyruvate in educated cells (Fig 3H and 3I), we tested whether

lactate supports KLEC growth. We found that supplementing the growth medium with Lactate

promotes KLEC growth, though to a lesser extent than with HUVEC co-culture (Fig 5I), sug-

gesting that lactate responsible for part of this phenotype. Consistent with this, we found that

KSHV infection leads to over expression of the monocarboxylate transporters MCT1 and 2

(S6 Fig), supporting our notion that these cells uptake high energy molecules such as lactate

and pyruvate to support their growth.

Taken together, these results suggest a metabolic feedback where KSHV infected cells

induce aerobic glycolysis in cells in their microenvironment, and those as a result secrete high

energy metabolites that support the KSHV infected cells.

Exosomes secreted from KSHV infected cells induce angiogenesis and

migration of non-infected cells

Kaposi’s sarcoma (KS) is a highly-vascularised tumour supporting large amounts of neo-

angiogenesis. It has been proposed that KSHV directly induces angiogenesis in a paracrine

fashion [45]. Consistent with this KSHV infection of endothelial cells in culture induces a

number of host pathways involved in activation of angiogenesis and a number of KSHV genes

themselves can induce pathways involved in angiogenesis.

We have previously shown that expression of the KSHV miRNAs leads to stabilisation of

HIF1α in infected cells [11]. Here we found that exosomal transfer of KSHV miRNAs leads to

similar affect also in non-infected cells (Fig 3G). Since HIF1α is as a master regulator of angio-

genesis[46], we hypothesis that KSHV uses exosomes to induce angiogenesis also in non-

infected cells. To test this, we determined the angiogenic ability of non-infected LEC using an

endothelial cell tube-formation assay. As shown in Fig 6A and 6B, LEC educated by KLEC-

derived exosomes have greater angiogenic potential compared to LEC educated by LEC or

ΔmiR-KLEC derived exosomes. This suggests that viruses can use exosomes secretion as a

mechanism to enrich their growth environment by increasing the angiogenic potential of non-

infected endothelial cells.

It was previously shown that exosomes collected from patient blood or KS models can

induce migration [13]. In order to directly test if this phenotype is due to transfer of the viral

miRNAs we educated HUVEC using exosomes from LEC, KLEC and ΔmiR-KLEC, and tested

their migration capability using wound assay. We found that while HUVEC educated using

LEC or ΔmiR-KLEC exosomes migrate similarly, HUVEC educated using KLEC derived exo-

somes migrate faster (Fig 6C and 6D).

Taken together these results suggest that KSHV uses exosomes to induce angiogenesis and

migration of non-infected cells around its host cell, and present a potential mechanism allow-

ing the virus to enrich its microenvironment.

Discussion

Viruses have long served as tools in molecular and cellular biology to study a variety of com-

plex processes. In this study, we reveal a novel mechanism by which oncogenic herpesviruses

can regulate the nature of their microenvironment, which has implications for cancer cell

biology.

We have found that KSHV not only regulates its host cell metabolism, but also alters the

metabolism of neighbouring non-infected cells. We report that exosomes secreted from

latently infected primary LEC selectively transfer the viral miRNAs into neighbouring cells.

While these cells remain uninfected, the viral miRNAs are active in them and down regulate

Exosomal regulation of tumour microenvironment

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006524 August 24, 2017 12 / 24

https://doi.org/10.1371/journal.ppat.1006524


expression of their target genes. This results in a metabolic shift toward aerobic glycolysis and

reduced mitochondria biogenesis. Moreover, our data show that this exosomal transfer of

miRNAs transforms the exosome-recipient cells into ‘feeder cells’ producing a microenviron-

ment that is more supportive for host cell growth. We suggest this is due to secretion of high

energy molecules, such as lactate and pyruvate, that can be used by the infected cells (Fig 7).

Moreover, we found that this flow of genetic information increases the angiogenic potential of

non-infected cells and therefore, could further enrich the infected cells microenvironment to

support their fitness.

Our data suggest that KSHV uses a miRNAs-based mechanism to manipulate the

metabolism of cells in its microenvironment. This is based on: (i) our previous observation

that expression of the KSHV miRNAs is sufficient to induce aerobic glycolysis, (ii) our

observation that the KSHV miRNAs are active in recipient cells to regulate the same meta-

bolic target genes as in KSHV infected cells and (iii) the fact that exosomes secreted from

ΔmiR-KLEC, which do not contain the viral miRNAs, do not have the same effect. Never-

theless, while our data show that the KSHV miRNAs are the driving force behind this meta-

bolic phenotype, the possibility that other components in these exosomes might support it,

still needs to be further investigated.

To some extent it is not unexpected that KSHV miRNAs will be present in exosomes

secreted from latent cells, since these miRNAs are highly expressed in them. Indeed, it was

Fig 6. KLEC-derived exosomes increase the angiogenic potential and migration of non-infected endothelial cells. (A-B) 105 LEC

were educated using 2.5x109 LEC, KLEC or ΔmiR-KLEC—derived exosomes. Angiogenic potential was measured using an endothelial cell

tube-formation assay. (A) Representative images of tubes formed on matrigel. (B) Average number of tubes per field acquired. The graph

presents the mean and standard deviation of 3 biological repeats. Statistical significance was denoted by *P < .05, **P < .01, ***P < .001.

(C-D) Cell migration of educated HUVEC was measured using wound healing assay (scratch assay). Educated HUVEC were seeded at 80%

confluence in a 24-well plate and allowed to equilibrate overnight. Once scratched, plates were immediately placed in Nikon Biostation CT or

Zeiss Cell Observer and Images were acquired for 16 hours. (C) representative images of educated HUVEC at 0, 3, 6 and 9 hours’ post

scratch. (D) Relative scratch area over time as analysed using ImageJ.

https://doi.org/10.1371/journal.ppat.1006524.g006
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shown that these miRNAs are present in exosomes collected from plasma of KS patient or KS

mouse models [13]. While identification of viral miRNAs in the blood might be useful for

diagnostic purposes, it is hard to appreciate the biological advantage for the virus by transfer-

ring these miRNAs in the blood stream. Here we show for the first time that the KSHV miR-

NAs are selectively enriched in exosomes secreted from infected cells. Critically we show the

physiological functionality of this exosomal transfer in shaping the metabolic feature of the

infected cells microenvironment and the advantage of this local transfer for virally infected

cells. Although exosomes secreted from LEC and KLEC contain both viral and cellular miR-

NAs, our results support the notion that the KSHV miRNAs are the driving force behind this

metabolic transformation since it is not induced by exosomes secreted from cell infected with

a mutant virus, lacking the miRNAs cluster (ΔmiR-KLEC). Our results also show that although

the KSHV miRNAs are highly expressed in infected cells, much lower levels are sufficient to

regulate their target genes and to induce aerobic glycolysis in surrounding cells. These results

are consistent with other studies showing that exosomes can transfer miRNAs in sufficient lev-

els to regulate their target genes in the recipient cells [19, 47–49]. We therefore suggest that

infected cells express the viral miRNAs in much higher levels than those required to regulate

their target genes, to ensure their inclusion in the secreted exosomes.

Our results suggest that regulation of cell metabolism by miRNAs transfer is not unique for

KSHV but may present a more general mechanism used by other viruses and cancer cells.

EBV, a close relative of KSHV, encodes at least 40 miRNAs, many of which regulate the same

Fig 7. KSHV recruits its microenvironment by transferring its miRNAs in exosomes. Exosomes secreted from

latently infected primary LEC transfer the viral miRNAs into neighbouring cells. While these cells remain uninfected, the

viral miRNAs are active in them and down regulate expression of their target genes. This results in a metabolic shift

toward aerobic glycolysis and to reduced mitochondria biogenesis. This process decreases the sensitivity of the

exosome-recipient cells to KSHV but increase their angiogenic potential and supports replication in the parental cells by

supplying high energy molecules.

https://doi.org/10.1371/journal.ppat.1006524.g007
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genes and pathways as the KSHV miRNAs [35]. We show here that EBV can transfer these

miRNAs in exosomes and these can also affect mitochondrial respiration in exosome recipient

cells. It was previously shown that exosomes secreted from EBV infected cells also transfer pro-

teins that might be involved in altering the metabolism of recipient cells [22]. While our results

do not rule out this possibility, the fact that EBV and KSHV are suggested to share many of

their miRNAs target genes supports our model that viral miRNAs transfer is the driving force

behind this metabolic regulation.

Herpesviruses account for most of the viral encoded miRNAs, though other DNA and even

RNA viruses also encode miRNAs [50]. miRNAs are likely to be invisible to the adaptive

immune response. Therefore, transferring miRNAs via exosomes would be advantageous dur-

ing persistent infection since it allows viruses to recruit cells in their vicinity without produc-

ing and releasing new viral particles, a process that requires energy and that exposes them to

the immune system. Moreover, many cellular miRNAs are also known to be involved in regu-

lation of energy metabolism [38]. miR-210 is highly expressed under hypoxic conditions to

alter cellular processes including cell cycle regulation, mitochondria function, apoptosis and

angiogenesis [51]. Hypoxia can arise because of oxygen diffusion limitation in avascular pri-

mary tumours or due to abnormal tumour microvascularization. For these reasons, these

cells might also have poor nutrient supply. Our results suggest the miR-210, which is over-

expressed under these conditions, can be transferred by exosomes into cells in the tumour

microenvironment. Inducing the Warburg effect in their microenvironment by transferring

miR-210 into normoxic non-cancer cells can support the growth of the hypoxic cancer cells by

supplying high-energy molecules such as lactate and pyruvate. Our results with miR-210, raise

the possibility that other onco-miRs can be transferred into the microenvironment to support

the tumour growth.

Our results suggest that altering their host metabolism by miRNA transfer is a novel mecha-

nism used by oncogenic viruses to influence their hosts. One outcome of this, is growth sup-

port for the virus host cell. However, cell metabolism has also been shown to be involved in

regulation of other cellular processes that are relevant for KS development and prolong infec-

tion. Cell metabolism and specifically oxidative metabolism and glycolysis were also shown to

regulate both innate and adaptive immune systems [52]. Moreover, it was recently shown that

glucose consumption by tumours metabolically restricts T cells, thereby allowing tumour pro-

gression [53]. Our results suggest that viruses might use exosomes to create a hypoglycaemic

microenvironment that similarly suppress the immune response against infected cells. Thus,

our results raise the possibility that viruses use exosomes to shape the metabolism of their

microenvironment during persistent infection, as a mechanism to evade the immune system.

It was previously shown that exosomes secreted from breast cancer cells can inhibit glycoly-

sis in the pre-metastatic niche [19] and that exosomes secreted from cancer associated fibro-

blast can induce aerobic glycolysis in nearby cancer cells [18]. Here we show the opposite

effect, whereby uptake of exosomes from herpes viruses-infected cells induce aerobic glycolysis

in surrounding normal cells. This is the first-time exosomes are shown to induce the reverse

Warburg effect and presents a new mechanism by which cancer cells can recruit cells in their

microenvironment to support their growth.

KSHV miRNAs were shown to regulate many other cellular processes such as cytokine

responses, immune recognition, cell survival, transcriptional reprogramming and angiogenesis

[54–56]. Therefore, transfer of the viral miRNAs via exosomes may alter a wide spectrum of

processes, adding to the complexity of the relationship between viruses and their hosts. The

cross talk between KS cells and their microenvironment warrants further study, with a view to

identifying novel therapeutic targets.
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We present a novel mechanism allowing viruses to regulate the metabolism and migration

of cells in their vicinity in a way that supports their fitness by transferring their genetic material

via exosomes. We suggest that viruses and cancer cells use this mechanism to shape a specific

metabolic niche that will favour their proliferation. It also implies that, similar to cancer cells,

latently infected cells depend on their environments for sustained growth. Targeting this

miRNA transfer-based metabolic cross-talk between diseased cells and their microenviron-

ment could therefore open a new therapeutic window.

Materials and methods

Cell culture

HUVEC and LEC were purchased from Promocell and grown in endothelial growth medium

2 and MV2 (Promocell) respectively. Both cell types were used for experiments before passage

8. To exclude exosomes derived from the FBS, it was subjected to centrifugation of 120,000g

for 3 hours. iSLK producing cells were kindly provided by Rolf Renne (University of Florida).

KSHV producing iSLK cells were cultured in DMEM (Invitrogen), supplemented with 10%

FBS, 1μg/ml Puromycin, 250μg/ml Geneticin and 1200μg/ml Hygromycin. HEK293T (ATCC)

and HCT116 (ATCC) cells were cultured in DMEM (Invitrogen), supplemented with 10%

FBS. EBV producer line Akata (kindly provided by Paul Farrell, Imperial College) and EBV

negative Akata (kindly provided by Andrew Bell, University of Birmingham) were cultured in

RPMI 1640 (Invitrogen) supplemented with 10% FCS.

KSHV preparation and establishment of stable infections

Wild type and ΔmiR-cluster KSHV were prepared from iSLK cells as previously described

[23]. Early passage LEC were infected and selected using 50ug/ml Hygromycin B (Invitrogen).

Cells were tested for 100% infection (GFP positive) before carrying on any experiment.

Repeats for each experiment were performed using different KSHV infections.

Exosomes purification

Uninfected LEC and LEC infected with WT or ΔmiR-cluster were grown up to approximately

80% confluency. Infected cells were cultured for at least 6 days before collecting media to verify

latency establishment, and were grown up to passage 8. Medium was replaced every 48, and

kept at 4˚C for up to 7 days. The medium was subjected to centrifugation of 300g for 5 min-

utes, 2000g for 10 minutes and concentrated with a Centricon Plus-70 filter (Millipore)

according to the manufacturer’s instructions. The media was then subjected to centrifugation

of 10,000g for 1 hour, and was filtered using 0.22μM filters. To purify exosomes, the sample

was subjected to ultracentrifugation at 120,000xg for 1 hour and washed once with PBS. Exo-

somes pellet was resuspended in PBS, quantified for protein concentration and particle num-

ber, and stored at -80˚C.

Negative staining for TEM

The exosome suspensions in PBS were incubated on formvar- and 2 nm carbon-coated copper

grids overnight at 4˚C in a humidified chamber. They were then washed twice in ddH20 by

dipping onto the surface of a water droplet and then stained with 2% aqueous uranyl acetate

for 2.5 minutes. The stain was drawn off with cartridge paper to leave a thin negative stain.

The sections were examined in a Jeol 1010 microscope. Images were taken with a Gatan Orius

SC100B charge-coupled device camera and analysed with Gatan Digital Micrograph.
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Vesicles characterization by Nanosight NS300

Characterisation of vesicle size distribution and concentration was performed using Nanopar-

ticle Tracking Analysis (NTA) (Malvern Instruments, Nanosight NS300). Sample size distribu-

tions were calibrated in a liquid suspension by the analysis of Brownian motion via light

scattering. Nanosight provides single particle size and concentration measurements.

Small RNA sequencing and analysis

Total RNA was extracted from exosomes or from their respective parental cells (3 biological

replicates for each condition) using the miRNeasy mini-kit (Qiagen) and was quantified using

Qubit RNA HS assay kit. 200ng or 500ng of RNA from exosomes or cells respectively, were

used for small RNA libraries using the NEBNext Multiplex Small RNA Library Prep Set for

Illumina (NEB) according to the manufacturer’s instructions. Constructed libraries were

assessed using the BioAnalyzer 2100 (Agilent) and KAPA Library Quantification Kit (KAPA

Biosystems). Quantified libraries were then sequenced using the single-end sequencing proto-

col at 36bp.

Expression of human and KSHV miRNA reads were quantified using PaTMaN [57] rapid

aligner to the miRbase release 21 database of miRNA sequences [http://mirbase.org] allowing

for 1 mismatch (or counting only perfect matches if more than one miRNA was matched).

Normalisation and differential expression were performed using the DESeq2 method [58],

whilst multiple testing correction employed independent hypothesis weighting (IHW) for

greater statistical power [59].

Exosomes treatment and labelling

For education experiments 105 non-infected cells were incubated for total of 48 hours when

2.5x109 exosomes were added every 24 hours. For biological replicates of all experiments, we

used exosomes from separate KSHV infections. For Transwell co-culture experiments, indi-

cated cells were grown on both compartments for total of 5 days and media was replaced every

other day. For exosome-tracking experiments, purified exosomes were fluorescently labelled

using Carboxyfluorescein succinimidyl diacetate ester (System Biosciences). Labelled exo-

somes were washed in 20 ml of PBS, collected by ultracentrifugation, and resuspended in PBS.

Basal cellular respiration rate

Cells were seeded in XF 24-well cell culture microplates (Seahorse Bioscience) at 4 × 104 cells/

well (0.32 cm2) in 200μl growth medium and then incubated at 37˚C/5% CO2 for 20–24

hours. Assays were initiated by removing the growth medium from each well and replacing it

with 600μl of assay medium pre-warmed to 37˚C. The cells were incubated at 37˚C for 30 min-

utes to allow media temperature and pH to reach equilibrium before the first-rate measure-

ment. Prior to each rate measurement, the XF24 Analyzer gently mixed the assay media in

each well for 3 min to allow the oxygen partial pressure to reach equilibrium. Following mix-

ing, OCR and ECAR were measured simultaneously for 4 min to establish a baseline rate. The

assay medium was then gently mixed again for 3 min between each rate measurement to

restore normal oxygen tension and pH in the microenvironment surrounding the cells.

Uncoupled, maximal and non-mitochondrial respiration was determined after the addition of

5 μM oligomycin, 1 μM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and

2 μM antimycin-A. All chemicals were from Sigma-Aldrich.
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Glucose uptake

Glucose uptake was measured by incubating cells with 30μM glucose analogue 6-NBDG (Invi-

trogen) for 15 minutes. Cells where then washed and trypsinized and their fluorescence (λex:

465 nm, λem: 540nm) was measured by flow cytometry.

Mitochondrial structure and volume

Cells were loaded with 5μM Calcein-AM and 50nM MitoTracker Red (Invitrogen; 37 ˚C, 30

minutes) in growth media for 30 minutes and Z-series of images were acquired using a Zeiss

LSM 510 system (Carl Zeiss, Inc., Cambridge, UK), as previously described [11]. Maximal pro-

jection of images was used to quantify the area of green (Calcein) and red (mitoTracker Red)

signal. Mitochondrial area was defined relative to cytoplasmic area as ‘area red/area green’.

Images were analyzed using the MetaMorph Microscopy Automation & Image Analysis Soft-

ware (Molecular Devices). The two channels (Calcein-AM and MitoTracker Red) were sepa-

rated and threshold in order to acquire two separate binary images. To ensure reproducibility,

for each biological repeat, we analysed images of at least 10 fields, when each field contain

between 5–10 cells.

Metabolites extraction

Metabolites were extracted according to the Human Metabolome Technologies, Inc. protocol.

Shortly, 2x106 cells were washed twice using 5% mannitol solution and metabolites were

extracted by adding methanol for 30 second. The extracted solution was centrifuged 2300g at

4˚C for 5 minutes, filtered and evaporated using centrifugal evaporator. Analysing the ionic

metabolites including in these cells by CE-TOFMS and CE-QqQMS was performed by

Human Metabolome Technologies, Inc. The results in the manuscript present 3 biological

repeats, where cells were educated using exosomes from different KSHV infections.

Western blotting and antibodies

Cells were lysed in RIPA buffer (300mM Sodium Chloride, 1% NP-40, 0.5% Sodium deoxy-

cholate, 0.1% Sodium dodecyl sulphate and 50mM Tris pH 8.0). Exosomes were lysed directly

into 1x Laemmli sample buffer (Bio-Rad Laboratories). Equal amounts of protein were

resolved on Mini-PROTEAN TGX Precast gels (Bio-Rad Laboratories). Antibodies against

CD63 (Invitrogen), α-TUBULIN (Sigma-Aldrich), HIF1α (BD Transduction Laboratories),

LAMIN A/C (Santa Cruz Biotechnology), EBV-GP125 (GeneTex) and KSHV-ORF8 (Thermo-

Fisher Scientific) were detected with IRDye secondary antibodies (LI-COR) or HRP-conju-

gated secondary antibodies. Images were acquired using the Li-COR Odyssey Imaging System

or the GE Healthcare Imagequant LAS 4000.

qPCR and qRT–PCR

Genomic DNA for qPCR was extracted using the QIAamp DNA mini-kit (Qiagen). Cell total

RNA was extracted using either the RNeasy mini-kit or the miRNeasy mini-kit (Qiagen). Exo-

somal RNA was extracted using the miRNeasy mini-kit (Qiagen). KSHV genome copy num-

bers were quantified by qPCR as previously described [11].

cDNA synthesis for qRT–PCR quantification of mature miRNAs was performed using the

Exiqon Universal cDNA Synthesis Kit II according to the manufacturer’s instructions. Detec-

tion of the mature KSHV miRNAs was performed using the KSHV-miR LNA PCR primer sets

(Exiqon). Where indicated cellular small nucleolar RNA RNU66 or S5 rRNA were used as a

Exosomal regulation of tumour microenvironment

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006524 August 24, 2017 18 / 24

https://doi.org/10.1371/journal.ppat.1006524


reference RNA. Importantly, the KSHV LNA PCR primer sets do not give any background

detection for negative control (such as non-infected cells or ΔmiR-KLEC).

3’UTR Luciferase reporter assay

The reporter plasmids for the 3’UTRs of the indicated genes were previously described [11].

Cells expressing each of the reporter plasmids were incubated for 48 hours with the indicated

exosomes for 48 hours. Cells were harvested according to the Dual-Luciferase Reporter assay

system (Promega). Luciferase activity was measured using a Fluoroskan Ascent FL lumin-

ometer (ThermoScientific). Firefly activity was normalised to internal Renilla luciferase levels.

Endothelial tube formation assay

Growth factor–reduced Matrigel (Becton Dickinson) was placed in 96-well tissue culture plates

(75μl/well) and allowed to gel at 37˚C for 30 minutes. Then 1x104 LEC, pre-incubated with

exosomes derived from LEC, KLEC or ΔmiR-KLEC, were added to each well and incubated at

37˚C for 24 hours. Morphological changes were visualised using phase contrast microscope.

Wound healing assay

Educated HUVEC were seeded in 12 well plates and grown overnight to confluence. A 200μl

tip was used to make a straight scratch and plates were immediately placed in Nikon Biostation

CT or Zeiss Cell Observer. Images were acquired for 16 hours and analysed for scratch area

using ImageJ.

Overexpression of miR-210

miR-210 was cloned using the Gateway Cloning protocol (Invitrogen). Shortly, the mature

microRNA was amplified using the primers:

Forward–GCGGCCGCTGGTACCCTGGACACACAAGGAAA.

Reverse–AGATCTAGGGATCCCAGGTTGGCG.

The PCR product subcloned into the gateway entry vector pENTR/pTER+ [60]. The

miRNA was further cloned into the 3rd gen lentiviral promoter-less Gateway destination vec-

tor pLenti X1 Puro DEST using the Gateway LR Clonase II enzyme mix (Invitrogen).

Supporting information

S1 Fig. Characterisation of exosomes secreted from KLEC. (A) Representatives images of

KLEC after selection. (B) KSHV genome copy number in KLEC and ΔmiR-KLEC. qPCR was

carried out as previously described [61]. (C) Relative mRNA levels of LANA and vcyclin in

KLEC and ΔmiR-KLEC. mRNA levels were determined by qRT-PCR. TUBB levels were used

for normalisation. (D) Schematic illustration of the procedure used in this study to extract exo-

somes from LEC and KLEC. (E-F) Exosomes were collected from LEC, KLEC and ΔmiR-K-

LEC growth medium and analysed by Nanosight NS300 (Malvern) for size distribution (E)

and particle concentration (F). (G) Lysates from purified exosomes were separated by SDS/

PAGE and analysed by immunoblot for expression of the exosomal marker CD9 and Alix.

(H-I) Expression of the mature KSHV miRNAs in exosomes purified from KLEC and

ΔmiR-KLEC growth media. Detection of the mature KSHV miRNAs was performed using the

KSHV-miR LNA PCR primer sets (Exiqon). In all panels, except to panel B, the graphs present

the mean and standard deviation of 3 biological repeats.

(TIF)
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S2 Fig. KLEC-derived exosomes are being taken up by naïve cells. LEC were incubated with

fluorescently labelled exosomes and analysed using a fluorescence-activated cell sorter (FACS).

(TIF)

S3 Fig. KLEC-derived exosomes induce the reverse Warburg effect. (A) LEC were educated

using the indicated number of exosomes collected from KLEC growth media and analysed

using the Seahorse XF24 Analyser for oxygen consumption rate. The bar graph presents the

average base line oxygen consumption rate. (B) Oxygen consumption rate of uneducated LEC,

and LEC and KLEC co-cultured in transwell plates. (C) The indicated metabolites concentra-

tions as measured in educated cells using CE-TOFMS and CE-QqQMS (Human Metabolome

Technologies, Inc.). (D) LEC were educated using KLEC-derived exosomes, then grown for

additional 5 days in exosome free media and analysed using the Seahorse XF24 Analyser for

oxygen consumption rate. (E-F) HUVEC were educated using the indicated exosomes and

analysed for oxygen consumption rate using the Seahorse XF24 Analyser (E) or for mitochon-

dria volume (F) as previously described [11]. The bar graph presents the average mitochon-

drial volume in cells (Mean+SD, n = 3).

(TIF)

S4 Fig. Characterisation of exosomes secreted from AKATA cells. (A) Lysates from purified

exosomes or EBV (10μg) were separated by SDS/PAGE and analysed by immunoblot for the

viral protein gp125. (B) Lysates from purified exosomes or EBV (10μg) were separated by

SDS/PAGE and analysed by immunoblot for expression of the exosomal marker ALIX.

(TIF)

S5 Fig. miR-210 is transfer in exosomes to induce reverse Warburg effect. (A) Levels of

miR210 in exosomes secreted from 293T or HCT-116 force expressing miR210. Detection of

mature hsa-miR-210 was performed using a specific LNA PCR primer set (Exiqon). (B)

Expression levels of ISCU1 in cells educated using miR-210 exosomes. mRNA levels were

determined by quantitative real-time PCR (qRT-PCR). Tubulin beta (TUBB) levels were used

for normalisation. (C) Oxygen consumption rate (OCR) as measured using the Seahorse XF24

Analyser. Cells were seeded at a density of 4x104 cells per well and the assay was performed

according to the manufacturer’s Mito stress protocol.

(TIF)

S6 Fig. KLEC over express the monocarboxylate transporters MCT 1 and 2. mRNA levels

were determined by quantitative real-time PCR (qRT-PCR). Tubulin beta (TUBB) levels were

used for normalisation.

(TIF)

S1 Table. Expression levels of the KSHV miRNAs in KLEC and KLEC-derived exosomes.

The expression level was calculated as fraction of total reads detected in KLEC and KLEC-

derived exosomes.

(TIF)

S2 Table. Relative expression levels of selected miRNAs in KLEC compared to LEC.

(TIF)

S3 Table. Relative expression levels of selected miRNAs in KLEC derived exosomes com-

pared to LEC derived exosomes.

(TIF)
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