76 research outputs found

    Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa

    Get PDF
    The global shipping network facilitates the transportation and introduction of marine and terrestrial organisms to regions where they are not native, and some of these organisms become invasive. South Africa was used as a case study to evaluate the potential for shipping to contribute to the introduction and establishment of marine and terrestrial alien species (i.e. establishment debt) and to assess how this varies across shipping routes and seasons. As a proxy for the number of species introduced (i.e. 'colonisation pressure') shipping movement data were used to determine, for each season, the number of ships that visited South African ports from foreign ports and the number of days travelled between ports. Seasonal marine and terrestrial environmental similarity between South African and foreign ports was then used to estimate the likelihood that introduced species would establish. These data were used to determine the seasonal relative contribution of shipping routes to South Africa's marine and terrestrial establishment debt. Additionally, distribution data were used to identify marine and terrestrial species that are known to be invasive elsewhere and which might be introduced to each South African port through shipping routes that have a high relative contribution to establishment debt. Shipping routes from Asian ports, especially Singapore, have a particularly high relative contribution to South Africa's establishment debt, while among South African ports, Durban has the highest risk of being invaded. There was seasonal variation in the shipping routes that have a high relative contribution to the establishment debt of the South African ports. The presented method provides a simple way to prioritise surveillance effort and our results indicate that, for South Africa, port-specific prevention strategies should be developed, a large portion of the available resources should be allocated to Durban, and seasonal variations and their consequences for prevention strategies should be explored further. (Résumé d'auteur

    Acute Cardiovascular Manifestations in 286 Children With Multisystem Inflammatory Syndrome Associated With COVID-19 Infection in Europe

    Get PDF
    Background: The aim of the study was to document cardiovascular clinical findings, cardiac imaging, and laboratory markers in children presenting with the novel multisystem inflammatory syndrome associated with coronavirus disease 2019 (COVID-19) infection. Methods: This real-time internet-based survey has been endorsed by the Association for European Paediatric and Congenital Cardiologists Working Groups for Cardiac Imaging and Cardiovascular Intensive Care. Children 0 to 18 years of age admitted to a hospital between February 1 and June 6, 2020, with a diagnosis of an inflammatory syndrome and acute cardiovascular complications were included. Results: A total of 286 children from 55 centers in 17 European countries were included. The median age was 8.4 years (interquartile range, 3.8-12.4 years) and 67% were boys. The most common cardiovascular complications were shock, cardiac arrhythmias, pericardial effusion, and coronary artery dilatation. Reduced left ventricular ejection fraction was present in over half of the patients, and a vast majority of children had raised cardiac troponin when checked. The biochemical markers of inflammation were raised in most patients on admission: elevated C-reactive protein, serum ferritin, procalcitonin, N-terminal pro B-type natriuretic peptide, interleukin-6 level, and D-dimers. There was a statistically significant correlation between degree of elevation in cardiac and biochemical parameters and the need for intensive care support (P<0.05). Polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 was positive in 33.6%, whereas immunoglobulin M and immunoglobulin G antibodies were positive in 15.7% cases and immunoglobulin G in 43.6% cases, respectively, when checked. One child in the study cohort died. Conclusions: Cardiac involvement is common in children with multisystem inflammatory syndrome associated with the Covid-19 pandemic. The majority of children have significantly raised levels of N-terminal pro B-type natriuretic peptide, ferritin, D-dimers, and cardiac troponin in addition to high C-reactive protein and procalcitonin levels. In comparison with adults with COVID-19, mortality in children with multisystem inflammatory syndrome associated with COVID-19 is uncommon despite multisystem involvement, very elevated inflammatory markers, and the need for intensive care support.info:eu-repo/semantics/publishedVersio

    Women's Education Level, Maternal Health Facilities, Abortion Legislation and Maternal Deaths: A Natural Experiment in Chile from 1957 to 2007

    Get PDF
    The aim of this study was to assess the main factors related to maternal mortality reduction in large time series available in Chile in context of the United Nations' Millennium Development Goals (MDGs).Time series of maternal mortality ratio (MMR) from official data (National Institute of Statistics, 1957-2007) along with parallel time series of education years, income per capita, fertility rate (TFR), birth order, clean water, sanitary sewer, and delivery by skilled attendants were analysed using autoregressive models (ARIMA). Historical changes on the mortality trend including the effect of different educational and maternal health policies implemented in 1965, and legislation that prohibited abortion in 1989 were assessed utilizing segmented regression techniques.During the 50-year study period, the MMR decreased from 293.7 to 18.2/100,000 live births, a decrease of 93.8%. Women's education level modulated the effects of TFR, birth order, delivery by skilled attendants, clean water, and sanitary sewer access. In the fully adjusted model, for every additional year of maternal education there was a corresponding decrease in the MMR of 29.3/100,000 live births. A rapid phase of decline between 1965 and 1981 (-13.29/100,000 live births each year) and a slow phase between 1981 and 2007 (-1.59/100,000 live births each year) were identified. After abortion was prohibited, the MMR decreased from 41.3 to 12.7 per 100,000 live births (-69.2%). The slope of the MMR did not appear to be altered by the change in abortion law.Increasing education level appears to favourably impact the downward trend in the MMR, modulating other key factors such as access and utilization of maternal health facilities, changes in women's reproductive behaviour and improvements of the sanitary system. Consequently, different MDGs can act synergistically to improve maternal health. The reduction in the MMR is not related to the legal status of abortion

    Trends and outcome of neoadjuvant treatment for rectal cancer: A retrospective analysis and critical assessment of a 10-year prospective national registry on behalf of the Spanish Rectal Cancer Project

    Get PDF
    Introduction: Preoperative treatment and adequate surgery increase local control in rectal cancer. However, modalities and indications for neoadjuvant treatment may be controversial. Aim of this study was to assess the trends of preoperative treatment and outcomes in patients with rectal cancer included in the Rectal Cancer Registry of the Spanish Associations of Surgeons. Method: This is a STROBE-compliant retrospective analysis of a prospective database. All patients operated on with curative intention included in the Rectal Cancer Registry were included. Analyses were performed to compare the use of neoadjuvant/adjuvant treatment in three timeframes: I)2006–2009; II)2010–2013; III)2014–2017. Survival analyses were run for 3-year survival in timeframes I-II. Results: Out of 14, 391 patients, 8871 (61.6%) received neoadjuvant treatment. Long-course chemo/radiotherapy was the most used approach (79.9%), followed by short-course radiotherapy ± chemotherapy (7.6%). The use of neoadjuvant treatment for cancer of the upper third (15-11 cm) increased over time (31.5%vs 34.5%vs 38.6%, p = 0.0018). The complete regression rate slightly increased over time (15.6% vs 16% vs 18.5%; p = 0.0093); the proportion of patients with involved circumferential resection margins (CRM) went down from 8.2% to 7.3%and 5.5% (p = 0.0004). Neoadjuvant treatment significantly decreased positive CRM in lower third tumors (OR 0.71, 0.59–0.87, Cochrane-Mantel-Haenszel P = 0.0008). Most ypN0 patients also received adjuvant therapy. In MR-defined stage III patients, preoperative treatment was associated with significantly longer local-recurrence-free survival (p < 0.0001), and cancer-specific survival (p < 0.0001). The survival benefit was smaller in upper third cancers. Conclusion: There was an increasing trend and a potential overuse of neoadjuvant treatment in cancer of the upper rectum. Most ypN0 patients received postoperative treatment. Involvement of CRM in lower third tumors was reduced after neoadjuvant treatment. Stage III and MRcN + benefited the most

    Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes

    Get PDF
    [EN] The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas and radiation ¿elds. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRAg model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No signi¿cant excess is found. As a consequence, the limits presented in this Letter start constraining the model parameter space for Galactic cosmic-ray production and transport.Albert, A.; Andre, M.; Anghinolfi, M.; Ardid Ramírez, M.; Aubert, J-.; Aublin, J.; Avgitas, T.... (2018). Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. The Astrophysical Journal. 868(2):1-7. https://doi.org/10.3847/2041-8213/aaeecfS178682Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Anderson, T. (2017). Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube. The Astrophysical Journal, 846(2), 136. doi:10.3847/1538-4357/aa8508Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., … Archinger, M. (2015). A COMBINED MAXIMUM-LIKELIHOOD ANALYSIS OF THE HIGH-ENERGY ASTROPHYSICAL NEUTRINO FLUX MEASURED WITH ICECUBE. The Astrophysical Journal, 809(1), 98. doi:10.1088/0004-637x/809/1/98Aartsen, M. G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., … Anderson, T. (2017). All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data. The Astrophysical Journal, 835(2), 151. doi:10.3847/1538-4357/835/2/151Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Anderson, T. (2017). Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data. The Astrophysical Journal, 849(1), 67. doi:10.3847/1538-4357/aa8dfbAartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). The IceCube Neutrino Observatory: instrumentation and online systems. Journal of Instrumentation, 12(03), P03012-P03012. doi:10.1088/1748-0221/12/03/p03012Ackermann, M., Ajello, M., Atwood, W. B., Baldini, L., Ballet, J., Barbiellini, G., … Berenji, B. (2012). FERMI-LAT OBSERVATIONS OF THE DIFFUSE γ-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM. The Astrophysical Journal, 750(1), 3. doi:10.1088/0004-637x/750/1/3Adrián-Martínez, S., Ageron, M., Aguilar, J. A., Samarai, I. A., Albert, A., André, M., … Ardid, M. (2012). The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 7(08), T08002-T08002. doi:10.1088/1748-0221/7/08/t08002Ageron, M., Aguilar, J. A., Al Samarai, I., Albert, A., Ameli, F., André, M., … Ardid, M. (2011). ANTARES: The first undersea neutrino telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 656(1), 11-38. doi:10.1016/j.nima.2011.06.103Ahn, H. S., Allison, P., Bagliesi, M. G., Beatty, J. J., Bigongiari, G., Childers, J. T., … Zinn, S. Y. (2010). DISCREPANT HARDENING OBSERVED IN COSMIC-RAY ELEMENTAL SPECTRA. The Astrophysical Journal, 714(1), L89-L93. doi:10.1088/2041-8205/714/1/l89Albert, A., André, M., Anghinolfi, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2017). New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope. Physical Review D, 96(6). doi:10.1103/physrevd.96.062001Antoni, T., Apel, W. D., Badea, A. F., Bekk, K., Bercuci, A., Blümer, J., … Zabierowski, J. (2005). KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems. Astroparticle Physics, 24(1-2), 1-25. doi:10.1016/j.astropartphys.2005.04.001Apel, W. D., Arteaga-Velázquez, J. C., Bekk, K., Bertaina, M., Blümer, J., Bozdog, H., … Cossavella, F. (2013). KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays. Astroparticle Physics, 47, 54-66. doi:10.1016/j.astropartphys.2013.06.004Gaggero, D., Grasso, D., Marinelli, A., Taoso, M., & Urbano, A. (2017). Diffuse Cosmic Rays Shining in the Galactic Center: A Novel Interpretation of H.E.S.S. and Fermi-LAT γ -Ray Data. Physical Review Letters, 119(3). doi:10.1103/physrevlett.119.031101Gaggero, D., Grasso, D., Marinelli, A., Urbano, A., & Valli, M. (2015). THE GAMMA-RAY AND NEUTRINO SKY: A CONSISTENT PICTURE OF FERMI -LAT, MILAGRO, AND ICECUBE RESULTS. The Astrophysical Journal, 815(2), L25. doi:10.1088/2041-8205/815/2/l25Gaggero, D., Urbano, A., Valli, M., & Ullio, P. (2015). Gamma-ray sky points to radial gradients in cosmic-ray transport. Physical Review D, 91(8). doi:10.1103/physrevd.91.083012Vladimirov, A. E., Digel, S. W., Jóhannesson, G., Michelson, P. F., Moskalenko, I. V., Nolan, P. L., … Strong, A. W. (2011). GALPROP WebRun: An internet-based service for calculating galactic cosmic ray propagation and associated photon emissions. Computer Physics Communications, 182(5), 1156-1161. doi:10.1016/j.cpc.2011.01.01

    ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky

    Get PDF
    [EN] A search for point-like and extended sources of cosmic neutrinos using data collected by the ANTARES and IceCube neutrino telescopes is presented. The data set consists of all the track-like and shower-like events pointing in the direction of the Southern Sky included in the nine-year ANTARES point-source analysis, combined with the throughgoing track-like events used in the seven-year IceCube point-source search. The advantageous ¿eld of view of ANTARES and the large size of IceCube are exploited to improve the sensitivity in the Southern Sky by a factor of ~2 compared to both individual analyses. In this work, the Southern Sky is scanned for possible excesses of spatial clustering, and the positions of preselected candidate sources are investigated. In addition, special focus is given to the region around the Galactic Center, whereby a dedicated search at the location of SgrA* is performed, and to the location of the supernova remnant RXJ 1713.7-3946. No signi¿cant evidence for cosmic neutrino sources is found, and upper limits on the ¿ux from the various searches are presented.The authors of the IceCube Collaboration acknowledge the support from the following agencies and institutions: USA-U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium-Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany-Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing Cluster of the RWTH Aachen; Sweden-Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia - Australian Research Council; Canada-Natural Sciences and Engineering Research Council of Canada, Calcul Quebec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark-Villum Fonden, Danish National Research Foundation (DNRF), Carlsberg Foundation; New Zealand-Marsden Fund; Japan-Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea-National Research Foundation of Korea (NRF); Switzerland-Swiss National Science Foundation (SNSF); United Kingdom-Department of Physics, University of Oxford.Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.... (2020). ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky. The Astrophysical Journal. 892(2):1-12. https://doi.org/10.3847/1538-4357/ab7afbS112892

    Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube

    Get PDF
    [EN] We present the results of the first combined dark matter search targeting the Galactic Center using the ANTARES and IceCube neutrino telescopes. For dark matter particles with masses from 50 to 1000 GeV, the sensitivities on the self-annihilation cross section set by ANTARES and IceCube are comparable, making this mass range particularly interesting for a joint analysis. Dark matter self-annihilation through the ¿+¿¿, ¿+¿¿, b¯b, and W+W¿ channels is considered for both the Navarro-Frenk-White and Burkert halo profiles. In the combination of 2101.6 days of ANTARES data and 1007 days of IceCube data, no excess over the expected background is observed. Limits on the thermally averaged dark matter annihilation cross section h¿A¿i are set. These limits present an improvement of up to a factor of 2 in the studied dark matter mass range with respect to the individual limits published by both collaborations. When considering dark matter particles with a mass of 200 GeV annihilating through the ¿þ¿¿ channel, the value obtained for the limit is 7.44 × 10¿24 cm3 s¿1 for the Navarro-Frenk-White halo profile. For the purpose of this joint analysis, the model parameters and the likelihood are unified, providing a benchmark for forthcoming dark matter searches performed by neutrino telescopes.The authors from the ANTARES Collaboration acknowledge the financial support of the following funding agencies: Centre National de la Recherche Scientifique (CNRS), Commissariat a l'energie atomique et auxenergies alternatives (CEA), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), IdEx program and UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11IDEX-0005-02), Labex OCEVU (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02), Region Ile-de-France (DIM-ACAV), Region Alsace (contrat CPER), Region Provence-Alpes-Cote d'Azur, Departement du Var and Ville de La Seyne-sur-Mer, France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; Council of the President of the Russian Federation for young scientists and leading scientific schools supporting grants, Russia; Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Severo Ochoa Centre of Excellence and MultiDark Consolider (MCIU), Junta de Andalucia (ref. SOMM17/6104/UGR), Generalitat Valenciana: Grisolia (ref. GRISOLIA/2018/119), Spain; Ministry of Higher Education, Scientific Research and Professional Training, Morocco. We also acknowledge the technical support of Ifremer, AIM and Foselev Marine for the sea operation and CC-IN2P3 for the computing facilities. The authors from the IceCube Collaboration gratefully acknowledge the support from the following agencies and institutions: USA-U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium-Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany-Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Germany-Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden-Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia-Australian Research Council; Canada-Natural Sciences and Engineering Research Council of Canada, Calcul Quebec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark-Villum Fonden, Danish National Research Foundation (DNRF), Carlsberg Foundation; New Zealand-Marsden Fund; Japan-Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea-National Research Foundation of Korea (NRF); Switzerland-Swiss National Science Foundation (SNSF); United Kingdom-Department of Physics, University of Oxford. The IceCube collaboration acknowledges the significant contributions to this manuscript from Sebastian Baur, Nadege Iovine and Sara Rebecca Gozzini.Albert, A.; Andre, M.; Anghinolfi, M.; Ardid Ramírez, M.; Aubert, J.; Aublin, J.; Baret, B.... (2020). Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube. Physical Review D: covering particles, fields, gravitation, and cosmology. 102(8):1-13. https://doi.org/10.1103/PhysRevD.102.082002S113102

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold

    Full text link
    [EN] miRNAs are fundamental endogenous regulators of gene expression in higher organisms. miRNAs modulate multiple biological processes in plants. Consequently, miRNA accumulation is strictly controlled through miRNA precursor accumulation and processing. Members of the miRNA319 family are ancient ribo-regulators that are essential for plant development and stress responses and exhibit an unusual biogenesis that is characterized by multiple processing of their precursors. The significance of the high conservation of these non-canonical biogenesis pathways remains unknown. Here, we analyze data obtained by massive sRNA sequencing and 5 ' - RACE to explore the accumulation and infer the processing of members of the miR319 family in melon plants exposed to adverse environmental conditions. Sequence data showed that miR319c was down regulated in response to low temperature. However, the level of its precursor was increased by cold, indicating that miR319c accumulation is not related to the stem loop levels. Furthermore, we found that a decrease in miR319c was inversely correlated with the stable accumulation of an alternative miRNA (#miR319c) derived from multiple processing of the miR319c precursor. Interestingly, the alternative accumulation of miR319c and #miR319c was associated with an additional and non-canonical partial cleavage of the miR319c precursor during its loop-to-base-processing. Analysis of the transcriptional activity showed that miR319c negatively regulated the accumulation of HY5 via TCP2 in melon plants exposed to cold, supporting its involvement in the low temperature signaling pathway associated with anthocyanin biosynthesis. Our results provide new insights regarding the versatility of plant miRNA processing and the mechanisms regulating them as well as the hypothetical mechanism for the response to cold-induced stress in melon, which is based on the alternative regulation of miRNA biogenesis.Bustamante-González, AJ.; Marques Romero, MC.; Sanz-Carbonell, A.; Mulet, JM.; Gomez, GG. (2018). Alternative processing of its precursor is related to miR319 decreasing in melon plants exposed to cold. Scientific Reports. 8:1-13. https://doi.org/10.1038/s41598-018-34012-7S1138Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16, 727–741 (2015).Shriram, V., Kumar, V., Devarumath, R. M., Khare, T. S. & Wani, S. H. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. Front Plant Sci 7, 817 (2016).Xie, M., Zhang, S. & Yu, B. microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72, 87–99 (2015).Bologna, N. G., Schapire, A. L. & Palatnik, J. F. Processing of plant microRNA precursors. Brief Funct Genomics 12, 37–45 (2012).Achkar, N. P., Cambiagno, D. A. & Manavella, P. A. miRNA Biogenesis: A Dynamic Pathway. Trends Plant Sci 21, 1034–1044 (2016).Dong, Z., Han, M. H. & Fedoroff, N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci USA 105, 9970–9975 (2008).Bologna, N. G. et al. Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Research 23, 1675–1689 (2013).Baranauskė, S. et al. Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res 43, 2802–2812 (2015).Zhang, S., Liu, Y. & Yu, B. New insights into pri-miRNA processing and accumulation in plants. WIREs. RNA 6, 533–545 (2015).Ren, G. et al. Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci USA 109, 12817–12821 (2012).Cuperus, J. T., Fahlgren, N. & Carrington, J. C. Evolution and functional diversification of MIRNA genes. Plant Cell 23, 431–442 (2011).Zhang, W. et al. Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11(8), r81 (2010).Addo-Quaye, C. et al. Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15, 2112–2121 (2009).Axtell, M. J., Snyder, J. A. & Bartel, D. P. Common functions for diverse small RNAs of land plants. Plant Cell 19, 1750–1769 (2007).Bologna, N. G., Mateos, J. L., Bresso, E. G. & Palatnik, J. F. A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28, 3646–3656 (2009).Li, Y., Li, C., Ding, G. & Jin, Y. Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways. BMC Evol Biol 11, 122 (2011).Sobkowiak, L., Karlowski, W., Jarmolowski, A. & Szweykowska-Kulinska, Z. Non-Canonical Processing of Arabidopsis pri-miR319a/b/c Generates Additional microRNAs to Target One RAP2.12 mRNA Isoform. Front Plant Sci 3, 46 (2012).Achard, P., Herr, A., Baulcombe, D. C. & Harberd, N. P. Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357–3365 (2004).Allen, R. S. et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104, 16371–16376 (2007).Jones-Rhoades, M. W. & Bartel, D. P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14, 787–799 (2004).Palatnik, J. F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).Wang, S. T. et al. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa). PLoS One 9(3), e91357 (2014).Thiebaut, F. et al. Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35, 502–512 (2012).Sunkar, R. & Zhu, J. K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16, 2001–2019 (2004).Chen, H. et al. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites. BMC Plant Biol 15, 132 (2015).Garcia-Mas, J. et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109, 11872–11877 (2012).Nuñez-Palenius, H. G. et al. Melon fruits: genetic diversity, physiology, and biotechnology features. Crit Rev Biotechnol 28, 13–55 (2008).Gonzalez-Ibeas, D. et al. Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics 12, 393 (2011).Herranz, M. C., Navarro, J. A., Sommen, E. & Pallas, V. Comparative analysis among the small RNA populations of source, sink and conductive tissues in two different plant-virus pathosystems. BMC Genomics 16, 117 (2015).Sattar, S. et al. Expression of small RNA in Aphis gossypii and its potential role in the resistance interaction with melon. PLoS One 7(11), e48579 (2012).Dai, X. & Zhao, P. X. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res. 39, W155–9 (2011).Palatnik, J. F. et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13, 115–125 (2007).He, Z., Zhao, X., Kong, F., Zuo, Z. & Liu, X. TCP2 positively regulates HY5/HYH and photomorphogenesis in Arabidopsis. J Exp Bot 67, 775–785 (2016).Lau, O. S. & Deng, X. W. Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13, 571–577 (2010).Oyama, T., Shimura, Y. & Okada, K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11, 2983–2995 (1997).Ahmed, N. U., Park, J. I., Jung, H. J., Hur, Y. & Nou, I. S. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa. Funct Integr Genomics 15, 383–394 (2015).Catalá, R., Medina, J. & Salinas, J. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc Natl Acad Sci USA 108, 16475–16480 (2011).Schulz, E., Tohge, T., Zuther, E., Fernie, A. R. & Hincha, D. K. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant Cell Environ 38, 1658–1672 (2015).Perea-Resa, C., Rodríguez-Milla, M. A., Iniesto, E., Rubio, V. & Salinas, J. Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. Mol Plant 10, 791–804 (2017).Solfanelli, C., Poggi, A., Loreti, E., Alpi, A. & Perata, P. Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiol 140, 637–646 (2006).Reis, R. S., Eamens, A. L. & Waterhouse, P. M. Missing Pieces in the Puzzle of Plant MicroRNAs. Trends Plant Sci 20, 721–728 (2015).Kumar, R. Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl Biochem Biotech 174, 93–115 (2014).Ma, C., Burd, S. & Lers, A. miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84, 169–187 (2015).Song, L., Axtell, M. J. & Fedoroff, N. V. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20, 37–41 (2010).Bracken, C. P. et al. Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 39, 5658–5668 (2011).Gurtan, A. M., Lu, V., Bhutkar, A. & Sharp, P. A. In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA 18, 1116–1122 (2012).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17, 10–12 (2011).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq-2. Genome Biol 15, 550 (2014).Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11, 3–r25 (2010).Griffiths-Jones, S. miRBase: microRNA sequences and annotation. Current protocols in bioinformatics 12, 9 (2010).Li, H. et al. 1000 Genome Project Data Processing Subgroup The sequence alignment/map format & SAMtools. Bioinformatics 25, 2078–2079 (2009).Quinlan, A. & Hall, I. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, 3–r25 (2009)
    corecore