975 research outputs found

    Comparison Between Electropositive and Electronegative Cold Atmospheric-Pressure Plasmas: A Modelling Study

    Get PDF
    Cold atmospheric-pressure He + N2 and He + O2 plasmas are chosen as the representatives for electropositive and electronegative plasmas, of which the discharge characteristics are studied and then compared to each other by fluid models. As the increase of the impurity (N2 or O2) fraction from 0 to 10%, for He + N2 plasmas the electron density and ion density increase, the spatiotemporal distributions of electron density, ion density, electron temperature and electron generation rate change a little. On contrast, for He + O2 plasmas the electron density decreases, the ion density first increases and then decreases, the electron temperature increases in the bulk region, but decreases in the sheath region, and the plasmas transform from ᵞ mode to α mode as the significant change of electron generation rate distributions. Larger electric field is needed in the bulk region to sustain the electronegative plasma, so the electrical characteristics of He + O2 plasmas transform form capacitive to resistive with increasing O2fraction. Meanwhile, the ion-coupling power increases dramatically, which can be estimated by a formula based on the electronegativity. A new criterion for determining the sheath boundary, |ΔE| = 5 kV/cm2, is put forward, which is found suitable for both the electropositive and electronegative plasmas

    Impacts of MicroRNA Gene Polymorphisms on the Susceptibility of Environmental Factors Leading to Carcinogenesis in Oral Cancer

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) have been regarded as a critical factor in targeting oncogenes or tumor suppressor genes in tumorigenesis. The genetic predisposition of miRNAs-signaling pathways related to the development of oral squamous cell carcinoma (OSCC) remains unresolved. This study examined the associations of polymorphisms with four miRNAs with the susceptibility and clinicopathological characteristics of OSCC. METHODOLOGY/PRINCIPAL FINDINGS: A total of 895 male subjects, including 425 controls and 470 male oral cancer patients, were selected. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and real-time PCR were used to analyze miRNA146a, miRNA196, miRNA499 and miRNA149 genetic polymorphisms between the control group and the case group. This study determined that a significant association of miRNA499 with CC genotype, as compared to the subjects with TT genotype, had a higher risk (AOR = 4.52, 95% CI = 1.24-16.48) of OSCC. Moreover, an impact of those four miRNAs gene polymorphism on the susceptibility of betel nut and tobacco consumption leading to oral cancer was also revealed. We found a protective effect between clinical stage development (AOR = 0.58, 95% CI = 0.36-0.94) and the tumor size growth (AOR = 0.47, 95% CI = 0.28-0.79) in younger patients (age<60). CONCLUSIONS: Our results suggest that genetic polymorphism of miRNA499 is associated with oral carcinogenesis, and the interaction of the miRNAs genetic polymorphism and environmental carcinogens is also related to an increased risk of oral cancer in Taiwanese

    SLC2A10 genetic polymorphism predicts development of peripheral arterial disease in patients with type 2 diabetes. SLC2A10 and PAD in type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent data indicate that loss-of-function mutation in the gene encoding the facilitative glucose transporter GLUT10 (<it>SLC2A10</it>) causes arterial tortuosity syndrome via upregulation of the TGF-β pathway in the arterial wall, a mechanism possibly causing vascular changes in diabetes.</p> <p>Methods</p> <p>We genotyped 10 single nucleotide polymorphisms and one microsatellite spanning 34 kb across the <it>SLC2A10 </it>gene in a prospective cohort of 372 diabetic patients. Their association with the development of peripheral arterial disease (PAD) in type 2 diabetic patients was analyzed.</p> <p>Results</p> <p>At baseline, several common SNPs of <it>SLC2A10 </it>gene were associated with PAD in type 2 diabetic patients. A common haplotype was associated with higher risk of PAD in type 2 diabetic patients (haplotype frequency: 6.3%, <it>P </it>= 0.03; odds ratio [OR]: 14.5; 95% confidence interval [CI]: 1.3- 160.7) at baseline. Over an average follow-up period of 5.7 years, carriers with the risk-conferring haplotype were more likely to develop PAD (<it>P </it>= 0.007; hazard ratio: 6.78; 95% CI: 1.66- 27.6) than were non-carriers. These associations remained significant after adjustment for other risk factors of PAD.</p> <p>Conclusion</p> <p>Our data demonstrate that genetic polymorphism of the <it>SLC2A10 </it>gene is an independent risk factor for PAD in type 2 diabetes.</p

    A retrospective observational study of the relationship between single nucleotide polymorphisms associated with the risk of developing Colorectal cancer and survival

    Get PDF
    Background: There is variability in clinical outcome for patients with apparently the same stage colorectal cancer (CRC). Single nucleotide polymorphisms (SNPs) mapping to chromosomes 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and Xp22 have robustly been shown to be associated with the risk of developing CRC. Since germline variation can also influence patient outcome the relationship between these SNPs and patient survivorship from CRC was examined. Methods: All enrolled into the National Study of Colorectal Cancer Genetics (NSCCG) were genotyped for 1q41, 3q26.2, 6p21, 8q23.3, 8q24.21, 10p14, 11q13, 11q23.1, 12q13.13, 14q22, 14q22.2, 15q13.3, 16q22.1, 18q21.1, 19q13.11, 20p12, 20p12.3, 20q13.33 and xp22 SNPs. Linking this information to the National Cancer Data Repository allowed patient genotype to be related to survival. Results: The linked dataset consisted of 4,327 individuals. 14q22.22 genotype defined by the SNP rs4444235 showed a significant association with overall survival. Specifically, the C allele was associated with poorer observed survival (per allele hazard ratio 1.13, 95% confidence interval 1.05-1.22, P = 0.0015). Conclusion: The CRC susceptibility SNP rs4444235 also appears to exert an influence in modulating patient survival and warrants further evaluation as a potential prognostic marker

    miR-16 Targets Transcriptional Corepressor SMRT and Modulates NF-kappaB-Regulated Transactivation of Interleukin-8 Gene

    Get PDF
    The signaling pathways associated with the Toll-like receptors (TLRs) and nuclear factor-kappaB (NF-κB) are essential to pro-inflammatory cytokine and chemokine expression, as well as initiating innate epithelial immune responses. The TLR/NF-κB signaling pathways must be stringently controlled through an intricate network of positive and negative regulatory elements. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the stability and/or translation of protein-coding mRNAs. Herein we report that miR-16 promotes NF-κB-regulated transactivation of the IL-8 gene by suppression of the silencing mediator for retinoid and thyroid hormone receptor (SMRT). LPS stimulation activated miR-16 gene transcription in human monocytes (U937) and biliary epithelial cells (H69) through MAPK-dependent mechanisms. Transfection of cells with the miR-16 precursor promoted LPS-induced production of IL-8, IL-6, and IL-1α, without a significant effect on their RNA stability. Instead, an increase in NF-κB-regulated transactivation of the IL-8 gene was confirmed in cells following transfection of miR-16 precursor. Importantly, miR-16 targeted the 3′-untranslated region of SMRT and caused translational suppression of SMRT. LPS decreased SMRT expression via upregulation of miR-16. Moreover, functional manipulation of SMRT altered NF-κB-regulated transactivation of LPS-induced IL-8 expression. These data suggest that miR-16 targets SMRT and modulates NF-κB-regulated transactivation of the IL-8 gene

    Neonatal Administration of Thimerosal Causes Persistent Changes in Mu Opioid Receptors in the Rat Brain

    Get PDF
    Thimerosal added to some pediatric vaccines is suspected in pathogenesis of several neurodevelopmental disorders. Our previous study showed that thimerosal administered to suckling rats causes persistent, endogenous opioid-mediated hypoalgesia. Here we examined, using immunohistochemical staining technique, the density of μ-opioid receptors (MORs) in the brains of rats, which in the second postnatal week received four i.m. injections of thimerosal at doses 12, 240, 1,440 or 3,000 μg Hg/kg. The periaqueductal gray, caudate putamen and hippocampus were examined. Thimerosal administration caused dose-dependent statistically significant increase in MOR densities in the periaqueductal gray and caudate putamen, but decrease in the dentate gyrus, where it was accompanied by the presence of degenerating neurons and loss of synaptic vesicle marker (synaptophysin). These data document that exposure to thimerosal during early postnatal life produces lasting alterations in the densities of brain opioid receptors along with other neuropathological changes, which may disturb brain development

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore