94 research outputs found

    Characterization of the TruSense S310 Laser Range System for Contact-less Measurement of Liquid Levels in Large-Volume Neutrino Detectors

    Full text link
    Neutrino experiments often use large volumes of water, organic scintillators or noble liquids as active detection material. Due to the large hydrostatic and buoyancy forces involved, precise knowledge of the liquid levels inside the detector tank are mandatory. Here we present the main characteristics of the TruSense S310 Laser Range System. Level measurements can be performed without direct contact to the liquid and through a gas-proof acrylic window, thus preserving the strict radiopurity and chemical requirements of the target liquid. We report the results of a suit of laboratory experiments for short-term precision tests (±\pm5\,mm) and long-term stability studies. Moreover, we demonstrate that the infrared laser can be used while standard bi-alkali PMTs are operational. We discuss the mechanical layout and integration of the system in the OSIRIS pre-detector that will monitor the radiopurity of the liquid scintillator for the large-volume neutrino experiment JUNO

    Recent results from Pb-Au collisions at 158 GeV/c per nucleon obtained with the CERES spectrometer

    Full text link
    During the 1996 lead run time, CERES has accumulated 42 million events, corresponding to a factor of 5 more statistics than in 1995 and 2.5 million events of a special photon-run. We report on the results of the low-mass e+^+e^--pair analysis. Since the most critical item is the poor signal-to-background ratio we also discuss the understanding of this background, in absolute terms, with the help of a detailed Monte Carlo simulation. We show preliminary results of the photon analysis and summarize the results of the hadron analysis preliminarily reported on already at QM'97Comment: 10 pages, 9 figures, Proceedings of the XIV Int. Conf. on Nucleus-Nucleus Collisions,Quark Matter 99, Torino, Italy, May 10 - 15, 199

    The T Tauri star RY Tau as a case study of the inner regions of circumstellar dust disks

    Full text link
    We study the inner region of the circumstellar disk around the TTauri star RY Tau. Our aim is to find a physical description satisfying the available interferometric data, obtained with the mid-infrared interferometric instrument at the Very Large Telescope Interferometer, as well as the spectral energy distribution. We also compare the findings with the results of similar studies, including those of intermediate-mass stars. Our analysis is done within the framework of a passive circumstellar disk, which is optionally supplemented by the effects of accretion and an added envelope. To achieve a more consistent and realistic model, we used our continuum transfer code MC3D. In addition, we studied the shape of the 10um silicate emission feature in terms of the underlying dust population, both for single-dish and for interferometric measurements. We show that a modestly flaring disk model with accretion can explain both the observed spectral energy distribution and the mid-infrared visibilities obtained with the mid-infrared infrared instrument. We found an interesting ambiguity: a circumstellar active disk model with an added envelope, and a lower accretion rate than in the active disk model without envelope, could represent the observations equally as well. This type of model with the envelope should be considered a viable alternative in future models of other TTauri stars. The approach of a disk with a puffed-up inner rim wall and the influence of a stellar companion is also discussed. From the study of the silicate emission feature we see evidence for dust evolution in a TTauri star, with a decreasing fraction of small amorphous and an increasing fraction of crystalline particles closer to the star.Comment: 19 pages, 23 figures; accepted by Astronomy & Astrophysic

    The Use of a Stringent Selection System Allows the Identification of DNA Elements that Augment Gene Expression

    Get PDF
    The use of high stringency selection systems often results in the induction of very few recombinant mammalian cell lines, which limits the ability to isolate a cell line with favorable characteristics. The employment of for instance STAR elements in DNA constructs elevates the induced number of colonies and also the protein expression levels in these colonies. Here, we describe a method to systematically identify genomic DNA elements that are able to induce many stably transfected mammalian cell lines. We isolated genomic DNA fragments upstream from the human Rb1 and p73 gene loci and cloned them around an expression cassette that contains a very stringent selection marker. Due to the stringency of the selection marker, hardly any colony survives without flanking DNA elements. We tested fourteen ~3500 bp DNA stretches from the Rb1 and p73 loci. Only two ~3500 bp long DNA fragments, called Rb1E and Rb1F, induced many colonies in the context of the stringent selection system and these colonies displayed high protein expression levels. Functional analysis showed that the Rb1 DNA fragments contained no enhancer, promoter, or STAR activity. Our data show the potential of a methodology to identify novel gene expression augmenting DNA elements in an unbiased manner

    Structural basis for CRISPR RNA-guided DNA recognition by Cascade

    Get PDF
    The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.

    Rosseland and Planck Mean Opacities for Protoplanetary Discs

    Full text link
    In this paper, we present mean gas and dust opacities relevant to the physical conditions typical of protoplanetary discs. As the principal absorber for temperatures below ~1,500 K, we consider spherical and aggregate dust particles of various sizes, chemical structure, and porosity, consisting of ice, organics, troilite, silicates, and iron. For higher temperatures, ions, atoms, molecules, and electrons are included as the main opacity sources. Rosseland and Planck mean opacities are calculated for temperatures between 5 K and 10,000 K and gas densities ranging from 10^{-18} g/ccm to 10^{-7} g/ccm. The dependence on the adopted model of dust grains is investigated. We compare our results with recent opacity tables and show how different opacity models affect the calculated hydrodynamical structure of accretion discs.Comment: 12 pages, 4 figures, to be published in A&A, 200

    Planetesimal formation by sweep-up: How the bouncing barrier can be beneficial to growth

    Full text link
    The formation of planetesimals is often accredited to collisional sticking of dust grains. The exact process is unknown, as collisions between larger aggregates tend to lead to fragmentation or bouncing rather than sticking. Recent laboratory experiments have however made great progress in the understanding and mapping of the complex physics involved in dust collisions. We want to study the possibility of planetesimal formation using the results from the latest laboratory experiments, particularly by including the fragmentation with mass transfer effect, which might lead to growth even at high impact velocities. We present a new experimentally and physically motivated dust collision model capable of predicting the outcome of a collision between two particles of arbitrary masses and velocities. It is used together with a continuum dust-size evolution code that is both fast in terms of execution time and able to resolve the dust well at all sizes, allowing for all types of interactions to be studied without biases. We find that for the general dust population, bouncing collisions prevent the growth above millimeter-sizes. However, if a small number of cm-sized particles are introduced, for example due to vertical mixing or radial drift, they can act as a catalyst and start to sweep up the smaller particles. At a distance of 3 AU, 100-meter-sized bodies are formed on a timescale of 1 Myr. We conclude that direct growth of planetesimals might be a possibility thanks to a combination of the existence of a bouncing barrier and the fragmentation with mass transfer effect. The bouncing barrier is here even beneficial, as it prevents the growth of too many large particles that would otherwise only fragment among each other, and creates a reservoir of small particles that can be swept up by larger bodies. However, for this process to work, a few seeds of cm in size or larger have to be introduced.Comment: 17 pages, 13 figures. Accepted for publication in Astronomy and Astrophysic

    Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment

    Get PDF
    The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 ±\pm 0.016 (stat) ±\pm 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GWth_{th} reactors. The results were obtained from a single 10 m3^3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \sang = 0.086 ±\pm 0.041 (stat) ±\pm 0.030 (syst), or, at 90% CL, 0.015 << \sang  <\ < 0.16.Comment: 7 pages, 4 figures, (new version after PRL referee's comments

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
    corecore