290 research outputs found

    Effects of Ox-LDL on Macrophages NAD(P)H Autofluorescence Changes by Two-photon Microscopy

    Get PDF
    Ox-LDL uptakes by macrophage play a critical role in the happening of atherosclerosis. Because of its low damage on observed cells and better signal-to- background ratio, two-photon excitation fluorescence microscopy is used to observe NAD(P)H autofluorescence of macrophage under difference cultured conditions- bare cover glass, coated with fibronectin or poly-D-lysine. The results show that the optimal condition is fibronectin coated surface, on which, macrophages profile can be clearly identified on NAD(P)H autofluorescence images collected by two-photon microscopy. Moreover, different morphology and intensities of autofluorescence under different conditions were observed as well. In the future, effects of ox-LDL on macrophages will be investigated by purposed system to research etiology of atherosclerosis.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Prevalence of Modiļ¬able Cardiovascular Disease Risk Factors among Cardiac Patients who were Enrolled on Cardiac Rehabilitation Programme for Secondary Cardiac Prevention in a Local Heart Centre in Malaysia

    Get PDF
    Introduction: One of the important goals of cardiac rehabilitation programme (CRP) is secondary cardiac prevention through managing modiļ¬able cardiovascular (CVD) risk factors among cardiac patients. There were limited local studies on the prevalence of modiļ¬able CVD risk factors among cardiac patients who were enrolled on CRP for planning and allocation of resources in resource-limited settings of local CRP in Malaysia. Objective: To determine the prevalence of modiļ¬able CVD risk factors among cardiac patients who were enrolled on CRP for secondary cardiac prevention in Sarawak Heart Centre, Malaysia Methodology: This cross-sectional retrospective study involved 82 cardiac patients who were enrolled on CRP in Sarawak Heart Centre from June 2021 to May 2022. We analysed the patients' demographic data and the prevalence of their modiļ¬able CVD risk factors when they were enrolled on CRP for secondary cardiac prevention. The selected modiļ¬able CVD risk factors for analysis were based on latest ā€œMalaysia clinical practice guideline (CPG) on primary and secondary prevention of CVD 2017ā€ which included diabetes mellitus, hypertension, dyslipidaemia, over-weight or obesity (BMI ā‰„ 23), psychological factor (stress, anxiety or depression), active smoker, physical inactivity (less than the recommended level of 150 minutes per week of moderate-intensity physical activities) and diet low in fruits and vegetables (less than recommended 5 servings of fruits and vegetables per day). Results: For the patientsā€™ demographic data as shown in table 1, the majority of our cardiac patients who enrolled on CRP were male (91.5%), malay (45.1%), attained highest secondary education level (46.3%) and had referral diagnosis of acute coronary syndrome (61%). The prevalence of modiļ¬able CVD risk factors among cardiac patients who were enrolled on CRP in Sarawak Heart Centre from the highest to lowest percentage are shown in table 2. Conclusion: This study reported a high prevalence of modiļ¬able CVD risk factors among cardiac patients who were enrolled on CRP in Sarawak Heart Centre with top three highest prevalent modiļ¬able CVD risk factors being physical inactivity, diet low in fruits and vegetables consumption and overweight or obesity which can be emphasised and addressed during our CRP for effective secondary cardiac prevention

    A Fully Tunable Single-Walled Carbon Nanotube Diode

    Full text link
    We demonstrate a fully tunable diode structure utilizing a fully suspended single-walled carbon nanotube (SWNT). The diode's turn-on voltage under forward bias can be continuously tuned up to 4.3 V by controlling gate voltages, which is ~6 times the nanotube bandgap energy. Furthermore, the same device design can be configured into a backward diode by tuning the band-to-band tunneling current with gate voltages. A nanotube backward diode is demonstrated for the first time with nonlinearity exceeding the ideal diode. These results suggest that a tunable nanotube diode can be a unique building block for developing next generation programmable nanoelectronic logic and integrated circuits.Comment: 14 pages, 4 figure

    The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates

    Get PDF
    An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%

    Electroweak Model Independent Tests for SU(3) Symmetry in Hadronic B Decays

    Get PDF
    We study effects of new physics beyond the Standard Model on SU(3) symmetry in charmless hadronic two body B decays. It is found that several equalities for some of the decay amplitudes, such as A(Bd(Bu)ā†’Ļ€+Ļ€āˆ’,Ļ€+Kāˆ’(Ļ€āˆ’KĖ‰0))=A(Bsā†’K+Ļ€āˆ’,Kāˆ’K+(K0KĖ‰0))A(B_d (B_u) \to \pi^+\pi^-,\pi^+ K^- (\pi^- \bar K^0)) =A(B_s \to K^+ \pi^-, K^- K^+ (K^0 \bar K^0)), A(Bdā†’Ļ€+Ļāˆ’,Ļ€āˆ’Ļ+,Kāˆ’Ļ+,Ļ€+Kāˆ—āˆ’)=A(Bsā†’K+Ļāˆ’,Ļ€āˆ’Kāˆ—+,Kāˆ’Kāˆ—+,K+Kāˆ—āˆ’)A(B_d \to \pi^+\rho^-, \pi^- \rho^+, K^-\rho^+, \pi^+ K^{*-}) = A(B_s \to K^+ \rho^-, \pi^- K^{*+}, K^- K^{*+}, K^+ K^{*-}), A(Bd(Bu)ā†’Ļ+Ļāˆ’,Ļ+Kāˆ—āˆ’(Ļāˆ’KĖ‰āˆ—0))=A(Bsā†’Kāˆ—+Ļāˆ’,Kāˆ—āˆ’Kāˆ—+(Kāˆ—0KĖ‰āˆ—0))A(B_d (B_u) \to \rho^+\rho^-, \rho^+ K^{*-}(\rho^- \bar K^{*0})) =A(B_s \to K^{*+} \rho^-, K^{*-} K^{*+} (K^{*0} \bar K^{*0})), predicted by SU(3) symmetry in the SM are not affected by new physics. These relations provide important electroweak model independent tests for SU(3) symmetry in B decays.Comment: 4 pages, revte

    A Locus in Drosophila sechellia Affecting Tolerance of a Host Plant Toxin

    Get PDF
    Many insects feed on only one or a few types of host. These host specialists often evolve a preference for chemical cues emanating from their host and develop mechanisms for circumventing their hostā€™s defenses. Adaptations like these are central to evolutionary biology, yet our understanding of their genetics remains incomplete. Drosophila sechellia, an emerging model for the genetics of host specialization, is an island endemic that has adapted to chemical toxins present in the fruit of its host plant, Morinda citrifolia. Its sibling species, D. simulans, and many other Drosophila species do not tolerate these toxins and avoid the fruit. Earlier work found a region with a strong effect on tolerance to the major toxin, octanoic acid, on chromosome arm 3R. Using a novel assay, we narrowed this region to a small span near the centromere containing 18 genes, including three odorant binding proteins. It has been hypothesized that the evolution of host specialization is facilitated by genetic linkage between alleles contributing to host preference and alleles contributing to host usage, such as tolerance to secondary compounds. We tested this hypothesis by measuring the effect of this tolerance locus on host preference behavior. Our data were inconsistent with the linkage hypothesis, as flies bearing this tolerance region showed no increase in preference for media containing M. citrifolia toxins, which D. sechellia prefers. Thus, in contrast to some models for host preference, preference and tolerance are not tightly linked at this locus nor is increased tolerance per se sufficient to change preference. Our data are consistent with the previously proposed model that the evolution of D. sechellia as a M. citrifolia specialist occurred through a stepwise loss of aversion and gain of tolerance to M. citrifoliaā€™s toxins

    Investigation of spectral conversion of d(TTAGGG)4 and d(TTAGGG)13 upon potassium titration by a G-quadruplex recognizer BMVC molecule

    Get PDF
    We have introduced a G-quadruplex-binding ligand, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC), to verify the major structure of d(T2AG3)4 (H24) in potassium solution and examine the structural conversion of H24 in sodium solution upon potassium titration. The studies of circular dichroism, induced circular dichroism, spectral titration and gel competition have allowed us to determine the binding mode and binding ratio of BMVC to the H24 in solution and eliminate the parallel form as the major G-quadruplex structure. Although the mixed-type form could not be eliminated as a main component, the basket and chair forms are more likely the main components of H24 in potassium solution. In addition, the circular dichroism spectra and the job plots reveal that a longer telomeric sequence d(T2AG3)13 (H78) could form two units of G4 structure both in sodium or potassium solutions. Of particular interest is that no appreciable change on the induced circular dichroism spectra of BMVC is found during the change of the circular dichroism patterns of H24 upon potassium titration. Considering similar spectral conversion detected for H24 and a long sequence H78 together with the G4 structure stabilized by BMVC, it is therefore unlikely that the rapid spectral conversion of H24 and H78 is due to structural change between different types of the G4 structures. With reference to the circular dichroism spectra of d(GAA)7 and d(GAAA)5, we suggest that the spectral conversion of H24 upon potassium titration is attributed to fast ion exchange resulting in different loop base interaction and various hydrogen bonding effects

    Polymer-based microparticles in tissue engineering and regenerative medicine

    Get PDF
    Different types of biomaterials, processed into different shapes, have been proposed as temporary support for cells in tissue engineering (TE) strategies. The manufacturing methods used in the production of particles in drug delivery strategies have been adapted for the development of microparticles in the fields of TE and regenerative medicine (RM). Microparticles have been applied as building blocks and matrices for the delivery of soluble factors, aiming for the construction of TE scaffolds, either by fusion giving rise to porous scaffolds or as injectable systems for in situ scaffold formation, avoiding complicated surgery procedures. More recently, organ printing strategies have been developed by the fusion of hydrogel particles with encapsulated cells, aiming the production of organs in in vitro conditions. Mesoscale self-assembly of hydrogel microblocks and the use of leachable particles in three-dimensional (3D) layer-by-layer (LbL) techniques have been suggested as well in recent works. Along with innovative applications, new perspectives are open for the use of these versatile structures, and different directions can still be followed to use all the potential that such systems can bring. This review focuses on polymeric microparticle processing techniques and overviews several examples and general concepts related to the use of these systems in TE and RE applications. The use of materials in the development of microparticles from research to clinical applications is also discussed
    • ā€¦
    corecore