We demonstrate a fully tunable diode structure utilizing a fully suspended
single-walled carbon nanotube (SWNT). The diode's turn-on voltage under forward
bias can be continuously tuned up to 4.3 V by controlling gate voltages, which
is ~6 times the nanotube bandgap energy. Furthermore, the same device design
can be configured into a backward diode by tuning the band-to-band tunneling
current with gate voltages. A nanotube backward diode is demonstrated for the
first time with nonlinearity exceeding the ideal diode. These results suggest
that a tunable nanotube diode can be a unique building block for developing
next generation programmable nanoelectronic logic and integrated circuits.Comment: 14 pages, 4 figure