11 research outputs found

    Changes in the TRMM Version 7 Space/Time Averaged Level 3 Data Products Based on GPROF TMI Swath-Based Precipitation Retrievals

    Get PDF
    TRMM has three level 3 (space/time averaged) data products that aggregate level 2 TRMM Microwave Imager (TMI) GPROF precipitation retrievals. These three products are TRMM 3A12, which is a monthly accumulation of 2A12 the GPROF swath retrieval product; TRMM 3B31, which is a monthly accumulation of 2A12 and 2B31 the combined retrieval product that uses both Precipitation Radar (PR) and TMI data; and 3G68 and its variants, which provide hourly retrievals for TMI, PR and combined. The 3G68 products are packaged as daily files but provide hourly information at 0.5 deg x 0.5 deg resolution globally, 0.25 deg x 0.25 deg globally, or 0.1 deg x 0.1 deg over Africa, Australia and South America. This paper will present early information of the changes in the v7 TMI GPROF level 2 retrievals that have an impact on the level 3 accumulations. This paper provides an analysis of the effect the 2A12 GPROF changes have on 3G68 products. In addition, it provides a comparison between the TRMM level 3 products that use the TMI GPROF swath retrievals

    Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras

    Get PDF
    A geologically rapid Neoproterozoic oxygenation event is commonly linked to the appearance of marine animal groups in the fossil record. However, there is still debate about what evidence from the sedimentary geochemical record—if any—provides strong support for a persistent shift in surface oxygen immediately preceding the rise of animals. We present statistical learning analyses of a large dataset of geochemical data and associated geological context from the Neoproterozoic and Palaeozoic sedimentary record and then use Earth system modelling to link trends in redox-sensitive trace metal and organic carbon concentrations to the oxygenation of Earth’s oceans and atmosphere. We do not find evidence for the wholesale oxygenation of Earth’s oceans in the late Neoproterozoic era. We do, however, reconstruct a moderate long-term increase in atmospheric oxygen and marine productivity. These changes to the Earth system would have increased dissolved oxygen and food supply in shallow-water habitats during the broad interval of geologic time in which the major animal groups first radiated. This approach provides some of the most direct evidence for potential physiological drivers of the Cambrian radiation, while highlighting the importance of later Palaeozoic oxygenation in the evolution of the modern Earth system

    Development of the Complex General Linear Model in the Fourier Domain: Application to fMRI Multiple Input-Output Evoked Responses for Single Subjects

    Get PDF
    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function

    The Sedimentary Geochemistry and Paleoenvironments project

    No full text

    The Sedimentary Geochemistry and Paleoenvironments Project.

    Get PDF
    Authors thank the donors of The American Chemical Society Petroleum Research Fund for partial support of SGP website development (61017-ND2). EAS is funded by National Science Foundation grant (NSF) EAR-1922966. BGS authors (JE, PW) publish with permission of the Executive Director of the British Geological Survey, UKRI.Publisher PDFPeer reviewe

    Correction: Surgeons’ perspectives on artificial intelligence to support clinical decision-making in trauma and emergency contexts: results from an international survey

    Get PDF

    Surgeons' perspectives on artificial intelligence to support clinical decision-making in trauma and emergency contexts: results from an international survey

    Get PDF
    Background: Artificial intelligence (AI) is gaining traction in medicine and surgery. AI-based applications can offer tools to examine high-volume data to inform predictive analytics that supports complex decision-making processes. Time-sensitive trauma and emergency contexts are often challenging. The study aims to investigate trauma and emergency surgeons' knowledge and perception of using AI-based tools in clinical decision-making processes. Methods: An online survey grounded on literature regarding AI-enabled surgical decision-making aids was created by a multidisciplinary committee and endorsed by the World Society of Emergency Surgery (WSES). The survey was advertised to 917 WSES members through the society's website and Twitter profile. Results: 650 surgeons from 71 countries in five continents participated in the survey. Results depict the presence of technology enthusiasts and skeptics and surgeons' preference toward more classical decision-making aids like clinical guidelines, traditional training, and the support of their multidisciplinary colleagues. A lack of knowledge about several AI-related aspects emerges and is associated with mistrust. Discussion: The trauma and emergency surgical community is divided into those who firmly believe in the potential of AI and those who do not understand or trust AI-enabled surgical decision-making aids. Academic societies and surgical training programs should promote a foundational, working knowledge of clinical AI
    corecore