72 research outputs found

    Barcodes of marine invertebrates from north Iberian ports: Native diversity and resistance to biological invasions

    Get PDF
    Ports are gateways for many marine organisms transported by ships worldwide, especially non-indigenous species (NIS). In this study carried out in North Iberian ports (Cantabrian Sea, Bay of Biscay) we have observed 38% of exotic macroinvertebrates. Four species, namely the barnacle Austrominius modestus, the tubeworm Ficopomatus enigmaticus, the Pacific oyster Crassostrea gigas and the pygmy mussel Xenostrobus securis, exhibited clear signs of invasiveness. A total of 671 barcode (cytochrome oxidase subunit I or 18S rRNA) genes were obtained and confirmed the species status of some cryptic NIS. Negative and significant correlation between diversity estimators of native biota and proportion of NIS suggests biotic resistance in ports. This could be applied to management of port biota for contributing to prevent the settlement of biopollutants in these areas which are very sensitive to biological invasions.Versión del editor2,359

    Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling

    Get PDF
    Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods.Versión del editor1,953

    Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea

    Get PDF
    Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300–2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf

    Sized-based indicators show depth-dependent change over time in the deep sea

    Get PDF
    Size-based indicators are well established as a management tool in shelf seas as they respond to changes in fishing pressure and describe important aspects of community function. In the deep sea, however, vital rates are much slower and body size relationships vary with depth, making it less clear how size-based indicators can be applied and whether they are appropriate for detecting changes through time. The deep-sea fish stocks of the North Atlantic underwent a period of exploitation followed by management and conservation action that relieved this pressure. We used data from a deep-water bottom trawl survey in the Rockall Trough, at depths of 300–2000 m, to test whether size-based indicators changed over a 16-year period, during which fishing pressure decreased. We applied four indicators to these data: mean body length, mean maximum length, large fish indicator (LFI) and the slope of the biomass spectrum. Patterns were analysed within four different depth bands. The LFI and slope of the biomass spectrum showed positive change over time, suggesting recovery from fishing pressure. This response was generally most apparent in the shallowest depth band, where most fishing activity has been distributed. Values of the LFI were much higher overall than in shelf seas, so the same reference points cannot be applied to all marine ecosystems. These findings imply that size-based indicators can be usefully applied to the deep sea and that they potentially track changes in fishing pressure in the medium term

    The complete mitochondrial genome of Grapsus tenuicrustatus

    No full text

    The complete mitochondrial genome of Menathais tuberosa

    No full text

    Latitudinal variation in genome size in crustaceans

    No full text
    corecore