35 research outputs found
MOLECULAR BIOLOGY AND PHYSIOLOGY Genotypic Variation in Physiological Strategies For Attaining Cotton Lint Yield Production
ABSTRACT The quality and quantity of cotton (Gossypium hirsutum L.) lint produced are complex traits controlled by multiple processes. The physiology behind yield and quality variations is not completely understood. Objectives for this research were to document the physiological strategies diverse cotton genotypes take to achieve their yield and fiber quality. The genotypes 'DPL 444BR', 'DPL 555BR', 'FM 800BR', 'MD 9', 'MD 15-OP', 'MD 29', 'MD 51 normal', 'MD 51 okra', 'PM 1218BR', and 'ST 4892BR' were grown in the field from 2005-2008. Dry matter partitioning, leaf photosynthesis, chlorophyll concentration, root hydraulic conductance, lint yield, yield components, and fiber quality data were collected. Lint yields ranged from 1675 to 1119 kg ha -1 among the genotypes. The size of the available carbon assimilate pool generated by a genotype appeared to be related to lint yield production. Genotypes used different strategies to generate this carbon assimilate pool, i.e. through improved photosynthetic rates and/ or solar radiation interception, and then convert that carbon into lint production. Fiber quality variations, however, could not easily be explained by just variations in the plants ability to produce carbon assimilates. Beyond just the quantity of carbon assimilates, it is the manner in which the plant assembles these carbon skeletons into the cellular matrix that determines the quality of the fiber produced. These research findings can be utilized to meet the challenge of future yield and fiber quality improvements
MOLECULAR BIOLOGY AND PHYSIOLOGY Genotypic Variation in Physiological Strategies For Attaining Cotton Lint Yield Production
ABSTRACT The quality and quantity of cotton (Gossypium hirsutum L.) lint produced are complex traits controlled by multiple processes. The physiology behind yield and quality variations is not completely understood. Objectives for this research were to document the physiological strategies diverse cotton genotypes take to achieve their yield and fiber quality. The genotypes 'DPL 444BR', 'DPL 555BR', 'FM 800BR', 'MD 9', 'MD 15-OP', 'MD 29', 'MD 51 normal', 'MD 51 okra', 'PM 1218BR', and 'ST 4892BR' were grown in the field from 2005-2008. Dry matter partitioning, leaf photosynthesis, chlorophyll concentration, root hydraulic conductance, lint yield, yield components, and fiber quality data were collected. Lint yields ranged from 1675 to 1119 kg ha -1 among the genotypes. The size of the available carbon assimilate pool generated by a genotype appeared to be related to lint yield production. Genotypes used different strategies to generate this carbon assimilate pool, i.e. through improved photosynthetic rates and/ or solar radiation interception, and then convert that carbon into lint production. Fiber quality variations, however, could not easily be explained by just variations in the plants ability to produce carbon assimilates. Beyond just the quantity of carbon assimilates, it is the manner in which the plant assembles these carbon skeletons into the cellular matrix that determines the quality of the fiber produced. These research findings can be utilized to meet the challenge of future yield and fiber quality improvements
Tracking down carbon inputs underground from an arid zone Australian calcrete.
Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota
A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.
We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Researching Complex and Multi-Level Workplace Factors Affecting Disability and Prolonged Sickness Absence
This paper was also co-written by The Hopkinton Conference Working Group on Workplace Disability Prevention includes Benjamin C. Amick III, Johannes R. Anema, Elyssa Besen, Peter Blanck, Cécile R.L. Boot, Ute Bültmann, Chetwyn C.H. Chan, George L. Delclos, Kerstin Ekberg, Mark G. Ehrhart, Jean-Baptiste Fassier, Michael Feuerstein, David Gimeno, Vicki L. Kristman, Steven J. Linton, Chris J. Main, Fehmidah Munir, Michael K. Nicholas, Glenn Pransky, William S. Shaw, Michael J. Sullivan, Lois E. Tetrick, Torill H. Tveito, Eira Viikari-Juntura, Kelly Williams-Whitt, and Amanda E. Young. This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Purpose There is growing research evidence that workplace factors influence disability outcomes, but these variables reflect a variety of stakeholder perspectives, measurement tools, and methodologies. The goal of this article is to summarize existing research of workplace factors in relation to disability, compare this with employer discourse in the grey literature, and recommend future research priorities. Methods The authors participated in a year-long collaboration that ultimately led to an invited 3-day conference, “Improving Research of Employer Practices to Prevent Disability, held October 14–16, 2015, in Hopkinton, Massachusetts, USA. The collaboration included a topical review of the literature, group conference calls to identify key areas and challenges, drafting of initial documents, review of industry publications, and a conference presentation that included feedback from peer researchers and a question/answer session with a special panel of knowledge experts with direct employer experience. Results Predominant factors in the scientific literature were categorized as physical or psychosocial job demands, work organization and support, and workplace beliefs and attitudes. Employees experiencing musculoskeletal disorders in large organizations were the most frequently studied population. Research varied with respect to the basic unit of assessment (e.g., worker, supervisor, policy level) and whether assessments should be based on worker perceptions, written policies, or observable practices. The grey literature suggested that employers focus primarily on defining roles and responsibilities, standardizing management tools and procedures, being prompt and proactive, and attending to the individualized needs of workers. Industry publications reflected a high reliance of employers on a strict biomedical model in contrast to the more psychosocial framework that appears to guide research designs. Conclusion Assessing workplace factors at multiple levels, within small and medium-sized organizations, and at a more granular level may help to clarify generalizable concepts of organizational support that can be translated to specific employer strategies involving personnel, tools, and practices