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Abstract

Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining
the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often
interconnected with groundwater, forming a physical continuum, and their interaction has
been reported as a crucial driver for organic matter (OM) inputs in groundwater systems.
However, despite the growing concerns related to increasing anthropogenic pressure and
effects of global change to groundwater environments, our understanding of the dynamics
regulating subterranean carbon flows is still sparse. We traced carbon composition and
transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach
that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon
(DIC) (3"%Cpoc, 5'°Coic, "*Cpoc and '*Cpc) with fluorescence spectroscopy (Chro-
mophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic
and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential
aquifer recharge processes, water samples were collected from two boreholes under con-
trasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our iso-
topic results indicate limited changes and dominance of modern terrestrial carbon in the
upper part (northeast) of the bore field, but correlation between HR and increased old and
3C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestri-
ally to microbially derived compounds after rainfall in the same lower field bore, which was
also sampled for microbial genetics. Functional genomic results showed increased genes
coding for degradative pathways—dominated by those related to aromatic compound
metabolisms—during HR. Our results indicate that rainfall leads to different responses in dif-
ferent parts of the bore field, with an increase in old carbon sources and microbial
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processing in the lower part of the field. We hypothesise that this may be due to increasing
salinity, either due to mobilisation of CI” from the soil, or infiltration from the downstream salt
lake during HR. This study is the first to use a multi-technique assessment using stable and
radioactive isotopes together with functional genomics to probe the principal organic biogeo-
chemical pathways regulating an arid zone calcrete system. Further investigations involving
extensive sampling from diverse groundwater ecosystems will allow better understanding of
the microbiological pathways sustaining the ecological functioning of subterranean biota.

Introduction

The global carbon cycle fuels the processes that are responsible for maintaining the ecological
functioning of ecosystems [1,2]. Terrestrial environments, together with oceans, play a key
role in sequestering atmospheric carbon pools and allow fundamental recycling of biomass
[3]. However, on-going global warming, mainly caused by increased greenhouse gases linked
with anthropogenic activities, is putting at risk the maintenance of this ecological balance
[4,5].

During the last decade, carbon storage and fluxes in freshwater environments have gained
prominence as key factors in the global cycling of organic matter [6,7,8]. Drake et al. [9] esti-
mated up to 5.1 Pgy™" of carbon delivered from land to surficial inland aquatic systems (lakes,
rivers, reservoirs). Kayranli et al. [10] reported that soil and sediment from wetlands are
amongst the world’s most extensive carbon sinks, with peatlands accounting for a third of the
organic soil worldwide [11]. These observations are in concordance with Keiluweit, et al. [12],
who indicated that surficial soil and unsaturated zones provide the biggest carbon source
within the terrestrial framework. However, while widely investigated in surficial ecosystems,
carbon flows are understudied in groundwater environments [13,14].

Groundwater systems are often hydrologically interconnected with each other and/or to
surface terrestrial environments and water bodies [15]. Especially in arid environments, near-
surface groundwaters (e.g. groundwater dependent ecosystems (GDEs)), provide a vital con-
ceptual and physical continuum [16]. Surface water-groundwater exchanges (SW/GW) shape
biogeochemical dynamics, including carbon cycling and nutrient circulation, which regulate
the functioning of both surface and subterranean ecosystems [17]. However, dissolved carbon
concentrations within aquatic subterranean environments are typically orders of magnitude
lower than lakes and rivers [18,19,20]. McDonough et al. [21] reported average subterranean
global dissolved organic concentrations (DOC) of ~ 1 mg L™ f, while the global flux of inor-
ganic carbon (DIC) into groundwater is estimated to be 0.2 GtC y™* [22].

Subterranean DOC replenishment can occur either via SW/GW and/or via rainfall
recharge through soils containing high organic matter (OM) content [23,24]. Baker et al. [25]
suggested that seasonal saturation of sediments overlying unconfined groundwater plays a key
role in regulating organic carbon dynamics underground. Similar site-specific models have
been suggested over the last two decades [26,27], emphasising the importance of the vadose
zone as a source of carbon for groundwater biological communities and biogeochemical
cycling [28].

Groundwater communities are thought to be bottom-up regulated by the availability of
OM which drives ecological functioning (i.e. energy flows, trophic cascade effects) in ground-
water ecosystems [29]. Microbial diversity and productivity are considered to be limited by the
concentration and bioavailability of OM in groundwater [30]. While heterotrophic
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metabolism is commonly considered a major process for sustaining food web interactions in a
typically low-energy system [31], chemolithoautotrophic strategies have also been extensively
reported [32,33]. Microbially-processed OM, together with detrital fractions [34], are trans-
ferred to higher trophic levels of subterranean biota [35] by higher primary consumers (i.e. ter-
restrial (troglofauna) and obligate aquatic (stygofauna)). As a result, subterranean carbon
turnovers, often linked with recharge regimes [36], are ultimately responsible for cascading
effects on energy flows and food web interactions [37].

The Sturt Meadows (SM) calcrete in Western Australia hosts a stygofaunal community
composed of 18 macroinvertebrate species including blind dytiscid beetles and chiltoniid
amphipods, and is a hotspot for subterranean aquatic invertebrate diversity [38,39]. Recent
investigations into the ecological functioning of the calcrete stygofaunal assemblages [40,41]
have indicated that rainfall input dynamics play a vital role in shaping cascade effects. Here, we
extend this research by investigating carbon input dynamics and microbial processing under
contrasting rainfall periods via hydrochemistry, stable and radiocarbon isotope ecology and
DNA metabarcoding analyses. Through this multidisciplinary approach, we aim to 1) elucidate
the nature of the carbon inputs under differential rainfall regimes, 2) provide isotope-based
tracking of the organic and inorganic carbon sources in the groundwater, and 3) identify meta-
bolic and functional microbial patterns coupled with organic inflows linked to rainfall percola-
tion. The study of carbon inputs and their microbial incorporation has the potential to expand
our understanding of the ecological dynamics sustaining biodiversity in this taxonomic
hotspot.

Methodology
Study area

Field work was carried out at the Sturt Meadows (SM) calcrete, located within Sturt Meadows
pastoral station in the northeast of the Yilgarn region (28°41’S 120°58'E), Western Australia
(Fig 1A). The Yilgarn craton is one of the most important Late Archaean metallogenic prov-
inces in the world [42], and constitutes the bulk of this Western Australian region. The area
hosts calcretes formed by the precipitation of calcium carbonate along palaeodrainage chan-
nels [43], which have been the focus of research for more than a century [44,45,46]. The SM
aquifer is located upstream of Lake Raeside, covering an area of ~43 km?, and has a strong bio-
geochemical gradient comparable to estuarine systems [39]. Previous studies of the depth and
lithography of the calcrete [47,48] identified two geological sectors: calcretes and clayey forma-
tions (Fig 1B). The mean permeability of the SM calcrete is similar to that of sand (1.9-

4.6 x 10" m s-1 [49]), suggesting an average porosity of ~25% [50]. The average yearly rainfall
of the area is low, at around 200 mm, and pan evaporation is 2400 mm year™" (BoM). The aqui-
fer is very shallow, located two to four metres below the surface, and is accessible through
boreholes, initially drilled for mineral exploration, along a grid that can be divided into two
sections. The northern grid is 0.9 x 1.4 km with bores spacing at 100 m in north-south and
east-west directions, while the southern section is 1.2 x 0.9 km, containing bores separated
from each other 100 m east-west and 200 m north-south (Fig 1B). These bores are unlined,
except for about the upper 0.5 m which are lined with 10 cm diameter PVC pipe for stability,
and capped with PVC lids to avoid rainfall falling directly into the aquifer [50].

Field work procedures and sample preparation

Groundwater samples were collected from the unlined bores at D13 (zone CD) and W4 (zone
A2) using a submersible centrifugal pump (GEOSub 12V Purging Pump) after three well-vol-
umes were purged and stabilisation of in-field parameters (temperature, pH, salinity, dissolved
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Fig 1. Borehole grid showing its location within the Yilgarn region (a), the geological sectors (b) and the bores sampled (D13 and W4, in red), together with the
lithological profiles ((c) and (d)). CAL: soft calcrete, CZKS: siliceous calcrete, FZ: ferruginous zone, CLY: clay, GRA: granite, NL: no geology log, SLC: silcrete, GDR:

granodiorite, ASB: asbestos, CA: cavity.

https://doi.org/10.1371/journal.pone.0237730.9001

oxygen (DO) and oxidation-reduction potential (ORP)) was observed. The selected bores are
representative of the two main geological units of the area, W4 being in calcrete and D13 in
clayey formations (Fig 1B, 1C and 1D). Preliminary investigations on the hydrology of the SM
aquifer indicated that these two bores are the most reliable (i.e. lowest risk of drying) to test
biogeochemical and ecological patterns across time [41].
Rainfall and groundwater level fluctuations were monitored for one year (from 18/06/2017
to 17/06/2018) through a weather station installed near bore E7 (Fig 1B), and indicated very
patchy rainfall events and periodic recharge dynamics typical of Western Australian calcrete
systems [39]. However, monitoring of groundwater chemistry at the SM calcrete revealed
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infiltration of rainfall from the surface together with increased inputs of ammonia after rain
precipitation [41]. For this study, two sampling campaigns, corresponding to contrasting rain-
fall periods as categorised by Hyde et al. [51], were carried out on the 7/11/2017 (low rainfall,
LR; <10 mm of rain during the 30 days prior to sampling) and on the 17/03/2018 (high rain-
fall, HR; >30 mm of rain during the 30 days prior to sampling).

Changes in carbon content in water after different levels of rainfall were investigated using
dissolved organic (DOC) and inorganic (DIC) carbon and their isotopes (8"*Cpoc and
8"Cprc) coupled with radiocarbon analysis (**Cpoc and **Cp;c). These techniques were com-
plemented by measuring the DOC fluorescence. Samples for 8" °Cpoc were filtered through
0.2 um glass fiber filters, collected in 60 mL HDPE bottles and frozen after sampling. The
"“Cpoc samples were filtered through 0.2 um filters, collected in 1 L HDPE bottles and frozen
after sampling. The 8'’Cp;c samples were filtered through 0.2 um filters, collected in 12 mL
glass vials (Exetainers) and refrigerated after sampling. Samples for '*Cp;¢ analysis were fil-
tered through 0.45 pm filters and collected in 1 L HDPE, with no further treatment. The DOC
fluorescence samples were collected in 1 L HDPE bottles and kept refrigerated in darkness
until further tests. Other hydrochemistry parameters such as water isotopes (*H, '*0 and
8?H) and chloride concentration (Cl') were measured in water samples collected in 1 L HDPE
bottles that were immediately frozen until further analyses. All samples were sealed with seal-
ing tape after collection to limit atmospheric exchange, and kept in the dark.

Water samples for functional genomic investigations on the microbial community were
collected from the bore W4 and stored in 1 L HDPE bottles and frozen immediately after col-
lection. Samples were then filtered through 0.4 yum nitrocellulose membrane filters (Millipore,
Sigma, Burlington, MA, USA) using a vacuum system, and the filtered content was kept frozen
(-20°C) until further analyses. Temperature, pH, ORP, salinity, DO and depth were measured
in situ (bores D13 and W4) using portable field measurement equipment (Hydrolab Quanta
Multi-Probe Meter®). The field site was accessed and samples were collected with permit
approval (permit number 08-003150-1) from the Department of Parks and Wildlife of West-
ern Australia.

Instrument methods and data analysis

Biogeochemical measurements. DOC was determined by the non-purgeable organic car-
bon (NPOC) method using a Shimadzu high temperature combustion TOC-L/TNM-L analy-
ser. DIC was obtained through a total organic carbon (TOC) configuration which measured
the total carbon, followed by inorganic carbon. The TOC analysis was based on a standard
method 5310-B [52] with detection by NDIR detector. Both DOC and DIC analyses were run
in duplicates and the combustion temperature was 720°C.

8"*Cpoc isotopic ratios of waters were calculated using a Liquid Chromatography Isotope
Ratio Mass Spectrometer (LC-IRMS) at the La Trobe Institute for Molecular Sciences (LIMS,
La Trobe University, Melbourne, Australia) composed by a Accela 600 pump connected to a
Delta V Plus Isotope Ratio Mass Spectrometer via a Thermo Scientific LC Isolink (Thermo Sci-
entific). 8'°Cp; isotopic ratios in water were analysed by Isotope Ratio Mass Spectrometer—
Western Australia Biogeochemistry Centre at The University of Western Australia using a
GasBench II coupled with a Delta XL Mass Spectrometer (Thermo-Fisher Scientific)—and
results, with a precision of + 0.10 per mil (%o), were reported as %o deviation from the NBS19
and NSB18 international carbonate standard [53]. 8"°Cpoc and 8'°Cp¢ values were reported
%o relative to the Vienna Peedee Belemnite (VPDB).

For radiocarbon analyses of both the DOC and DIC (*Cpoc and "*Cpc), pre-treated sam-
ples were subjected to CO, extraction and graphitization following the methodology of Hua
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etal. [54] and Bryan et al. [55]. 4C content of samples was determined by means of the Accel-
erator Mass Spectrometry (AMS) at ANSTO (Australian Nuclear Science and Technology
Organisation) in Sydney, Australia [56]. Radiocarbon results were reported in conventional
age before present (BP, with BP being 1950), percent of modern carbon (pMC) and AM™C value
in per mil (%o) relative to the absolute radiocarbon standard activity in 1950 [57].

Absorbance scans and excitation emission matrices (EEMs) were recorded simultaneously
using an Aqualog® (Horiba Scientific). Fluorescence intensities were measured at excitation
wavelengths 250-500 nm (1 nm increments) and emission wavelengths 250-575 nm (3 nm
increments). The composition of DOM was characterised by a range of indices (HIXgy, BIX,
FI, SUVA254; S2 Table) and by identifying individual fluorescent components using parallel
factor analysis (PARAFAC) [58].

The 5'®0 and 8°H were analysed by IRMS at ANSTO, and their values are reported as per
mil (%o) deviations from the international standard V-SMOW and were reproducible to
+0.1%o and +1.0%o. The *H activities were expressed in tritium units (TU, uncertainty of + <
0.1 TU and quantification limit of < 1 TU) and were analysed by liquid scintillation counting
[59].

Genetic analyses. Three 1 litre water sample replicates collected from bore W4 (zone A2)
during both rainfall periods (LR and HR) were used for bacterial 16S metabarcoding and
microbial functional analysis. Water samples were filtered using two Sentino peristaltic micro-
biology pumps (Pall Life 126 Sciences, New York, USA), through 0.45 pum sterile membrane
filters (Pall Life Sciences, New York, USA). All water filtering equipment was soaked for a min-
imum of 10 minutes in 10% sodium hypochlorite solution and treated with UV light prior to
use and between samples. Immediately post-filtering, half of the filter membrane was used for
DNA extraction, while the remaining half was frozen at -20°C.

Water membranes, inclusive of laboratory controls, were extracted using DNeasy Blood
and Tissue Kit (Qiagen; Venlo, Netherlands), with the following modifications to the manufac-
turer’s protocol. For the DNA digest, both the ATL buffer (360 pL) and Proteinase K (40 pL)
solutions were doubled to ensure that the membranes were adequately exposed to the lysis
solution to optimise DNA yield. The DNA digests were incubated (56°C) overnight in a rotat-
ing hybridisation oven. The digest was transferred into a clean tube and loaded into a QIAcube
(Qiagen; Venlo, Netherlands) automated DNA extraction system for the remainder of the
extraction process. The DNA was eluted off the silica column in 100 uL AE buffer.

The quality and quantity of DNA extracted from each water membrane was measured
using quantitative PCR (qPCR), targeting the bacterial 16S gene. PCR amplifications to assess
the quality and quantity of the DNA target of interest via qPCR (Applied Biosystems [ABI],
USA) were carried out in 25 pL reaction volumes consisting of 2 mM MgCI2 (Fisher Biotec,
Australia), 1 x PCR Gold Buffer (Fisher Biotec, Australia), 0.4 uM dNTPs (Astral Scientific,
Australia), 0.1 mg bovine serum albumin (Fisher Biotec, Australia), 0.4 M of each primer
(Bactl6S_515F and Bact16S_806R; [60,61]), 0.2 uL of AmpliTaq Gold (AmpliTaq Gold, ABI,
USA) and 2 pL of template DNA (Neat, 1/10, 1/100 dilutions). The cycling conditions were:
initial denaturation at 95°C for 5 minutes, followed by 40 cycles of 95°C for 30 seconds, 52°C
for 30 seconds, 72°C for 30 seconds, and a final extension at 72°C for 10 minutes.

Extracts that successfully yielded DNA of sufficient quality, free of inhibition, as determined
by the initial QPCR screen (detailed above), were assigned a unique 6-8bp multiplex identifier
tag (MID-tag) with the bacterial 16S primer set. Independent MID-tag qPCR for each water
membrane were carried out in 25uL reactions containing 1X PCR Gold Buffer, 2.5mM MgCl2,
0.4mg/mL BSA, 0.25mM of each dNTP, 0.4uM of each primer, 0.2uL AmpliTaq Gold and
2-4pL of DNA as determined by the initial qQPCR screen. The cycling conditions for qPCR
using the MID-tag primer sets were as described above. MID-tag PCR amplicons were
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generated in duplicate and the library was pooled in equimolar ratio post-PCR for DNA
sequencing. The final library was size selected (160-600bp) using Pippin Prep (Sage Sciences,
USA) to remove any MID-tag primer-dimer products that may have formed during amplifica-
tion. The final library concentration was determined using a QuBitTM 4 Fluorometer (Ther-
mofischer, Australia) and sequenced using a 300 cycle V2 kit on an Illumina MiSeq platform
(Illumina, USA).

MID-tag bacterial 16S sequence reads obtained from the MiSeq were sorted (filtered) back
to the water sample based on the MID-tags assigned to each DNA extract using Geneious
v10.2.5 [62]. MID-tag and primer sequences were trimmed from the sequence reads allowing
for no mismatch in length or base composition.

Filtered reads were input into a containerised workflow comprising USEARCH [63] and
BLASTN [64]. The fastx-uniques, unoise3 (with minimum abundance of 8) and otutab com-
mands of USEARCH were applied to generate unique sequences, ZOTUs (zero-radius OTUs)
and abundance table, respectively. The ZOTUs were compared against the nucleotide database
using the following parameters in BLASTN: perc_identity > = 94, evalue < = le-3, best_hit_s-
core_edge 0.05, best_hit_overhang 0.25, qcov_hsp_perc 100, max_target_seqs = 5. An in-
house Python script was used to assign the ZOTUs to their lowest common ancestor (LCA).
The threshold for dropping a taxonomic assignment to LCA was set to perc_identity > = 96
and the difference between %identity of the two hits when their query coverage is equal was set
to 1.

To investigate functional activity involved in carbon cycling, the 16S metabarcoding data
were fed to the Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States 2 (PICRUSt2) software package to generate predicted metagenome profiles [65]. These
profiles were clustered into Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologs
(KOs) [66] and MetaCyc pathway abundances [67] focusing on carbon metabolism and degra-
dation pathways, respectively.

Statistical analysis

The statistical analyses on isotope, fluorescence and absorbance data were performed in R
software version 3.6.0 (Development-Core-Team, 2016). DOC, DIC, §"*Cpoc and 8*Cpc
values (obtained from two independent replicates per parameter) per bore (W4 and D13)
were compared across the two rainfall events using ANOV As (R-package ‘stats’). Radiocar-
bon results were unique per bore and sampling campaign, therefore data were not analysed
statistically.

The R package staRdom (version 1.1.1) [68] was used to correct EEMs, calculate all fluores-
cence/absorbance indices and for conducting PARAFAC modelling. EEMs were corrected for
blanks (Milli-Q water), inner filter effects, Raman normalised [69], and scatter (Raman and
Rayleigh) were removed and interpolated prior to PARAFAC. Our PARAFAC model was
split-half validated [70] and recognized five fluorescent components (S1 Fig). These compo-
nents are reported as maximum fluorescence intensity of each component (Fmax) in each
sample. Principal Components Analysis (PCA) was conducted on fluorescence/absorbance
indices to assess differences between sites and rainfall period. The R studio (version 3.6.1)
‘prcomp’ function was used to carry out the PCA and results are presented in two dimensions
(PC1 and PC2) along with eigenvectors. Differences in HIXgy;, BIX, FI and A,s4 between sites
and rainfall periods were tested using 2-way ANOVA, where site and rainfall period (and their
possible interaction) were treated as fixed factors. Tukey’s HSD tests were performed to deter-
mine which of the means were significantly different when significant main effects were
found. Data were log transformed to achieve normality when required.
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Beta diversity patterns—the variations in species composition among rainfall periods—
were analysed through the calculation of the Ochiai index [71] (R-package ‘adespatial’) and the
quotient of the temporal turnover (Simpson pairwise dissimilarity) and total dissimilarity
(measures as Sorensen pair-wise dissimilarity) (R-package ‘betapart’, function beta.pair). Pie-
lou’s evenness index (J) was calculated to infer the degree of dominant species in abundance,
with values ranging from 0 (no evenness at all) to 1 (complete evenness). The Phyloseq pack-
age in R [72] was used to plot the ZOTU abundance at the family and genus level for low rain-
fall (LR) and high rainfall (HR) periods from the bore W4. The Statistical Analysis of
Metagenomic Profiles (STAMP) bioinformatics software package was used to visualize and
determine statistically significant results from the PICRUSt2 output [73]. For comparison of
potential microbial metabolic shifts across rainfall periods, the White’s non parametric t-test
was used for both carbon metabolism and degradation pathways with confidence intervals of
95%, and visualized with extended error bar plots.

Results
Carbon inputs across rainfall periods

The DOC concentrations ranged from 0.39 + 0.21 mg/L (W4 under LR) to 1.94 + 0.75 mg/L
(D13 during HR), while concentrations of dissolved inorganic carbon (DIC) ranged from
63.5 + 0.14 mg/L (W4 under LR) to 87.44 + 0.66 mg/L (D13 during HR). D13 had consistently
higher DOC than W4.

DOC concentrations for bore W4 significantly increased under HR compared to LR
(ANOVA, P < 0.05). Concurrently, W4 had significantly more positive 8"*Cpoc values under
HR conditions than under LR conditions (ANOVA, P < 0.001) (Fig 2A). Groundwater from
bore D13 also had higher DOC levels under HR (Fig 2A) than those during LR, but this was
not statistically significant. 83 Cpoc values in D13 did not change after rainfall (SI Table),
while its "*Cpoc ages also remained similar between LR and HR, being younger than those in
W4 (Fig 2C). Compared to W4, DIC concentrations were higher in D13, and §'*Cpc. values
were less enriched, but these differences were not statistically significant (Fig 2B). Similar
increasing trends were found for DIC concentration and A"Cpic values for the two bores
when LR was compared to HR (Fig 2D).

Increasing trends for water temperature, DO (bore D13) and chloride concentrations
where coupled with decreasing patterns for pH, DO (bore W4), ORP and depth (S4 Table)
when LR is compared to HR. §'*0 and §°H values did not vary across rainfall periods within
the two bores analysed, while Tritium values from bore D13 were slightly lower during HR
(0.53TU) when compared to LR (0.77 TU).

Fluorescence and absorbance characterisation

Parallel factor analysis (PARAFAC) identified five unique humic-like fluorescent components
(S1 Fig). Component 1 (C1) had a primary excitation peak at <250 nm and secondary peak at
330 nm with a broad emission peak from 370 to >575 nm (Em. max at 415 nm). Component
2 (C2) had an excitation peak at <250 nm and at 300 nm with a broad emission peak from 350
to >575 nm (Em. max at 395 nm). Component 3 (C3) had an excitation peak at 268 nm and at
386 nm with a broad emission peak from 400 to >575 nm (Em. max at 446 nm). Component
4 (C4) had an excitation peak at 260 nm and at 370 nm with a broad emission peak from 420
to >600 nm (Em. max at 493 nm). Component 5 (C5) had an excitation peak at 250 nm and at
318 nm with an emission peak from 310 to >410 nm (Em. max at 364 nm). The rainfall
affected the fluorescence intensity of all PARAFAC components. For site D13, the fluorescence
maximum (Fmax) of all components increased after HR, while site W4 displayed the opposite
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trend, with elevated fluorescence after low rainfall (LR) (Fig 3A). During both rainfall periods
the Fmax of all components at site D13 was greater compared to site W4 (Fig 3A). Further, the
relative composition of components changed between bores. C1 was most predominant across
both bores and recharge periods explaining 37-50% of the CDOM signal. The contribution of
C3 and C4 was consistent across samples and rainfall regimes ranging from 20-25% and 12-
15% respectively. C5 had the largest change in contribution between the bores; contributing
7-8% at bore D13 and 13-18% at bore W4. Finally, during HR there was no presence of C2 at
bore W4 (Fig 3A).

Optical indices (HIXgys, Ajsq, BIX) varied between sites and rainfall period (Fig 3B). Over-
all, PCA of optical indices revealed a marked shift in CDOM composition for site W4, from
more terrestrially derived compounds during LR to compounds with a lesser degree of humifi-
cation during HR (i.e., microbial derived, autochthonous) (Fig 3B). In contrast, site D13 dis-
played negligible changes in CDOM composition, displaying slightly greater intensity of
humic-like/terrestrial compounds during HR compared to during LR (Fig 3B). The humifica-
tion index (HIXgp) ranged from 0.89 to 0.99, indicating that CDOM for both bores and rain-
fall periods was largely comprised of humic compounds, as HIXgy values above 0.9 indicate a
greater degree of humification [75,76,77]. During HR, both sites showed a marginal decrease
in their HIXgy; values, especially for site W4, however both remained close to 0.9 (Fig 3C).
Greater A,s, absorbance at bore D13 indicated more aromatic content than site W4 (Fig 3B
and 3C). Interestingly, BIX was greater at site W4 (i = 1.53 £ 0.11) during HR than during LR
(1t =1.07 £ 0.04) and compared to site D13 (u = 0.87 + 0.01) for either rainfall period
(P < 0.05, Fig 3C). The fluorescence index (FI) indicated CDOM was of terrestrial origin (FI ~
1.4; [78]) and did not change between bores or rainfall periods (p = 1.46 + 0.02; Fig 3C).

Microbial patterns

The 16S rRNA sequencing yielded 7503 sequences clustered into 87 ZOTUs (37 ZOTUs either
belonged to uncultured bacteria or no reference was available). After the removal of the
ZOTUs associated with the lab controls (N = 16), 25 ZOTUs were unique to LR, 25 ZOTUs
belonged to HR, and both rainfall periods shared the other 21 ZOTUs. During LR, the domi-
nant ZOTUs belonged to the families Rhodobacteraceae (Paracoccus sp. and Roseivarius sp.),
Pseudomonadaceae (Pseudomonas sp.), Planococcacea (Planomicrobium sp.) and Caulobacter-
aceae (Brevundimonas sp.). Under HR the dominant ZOTUs corresponded to the families
Rhodobacteraceae (Stappia sp. and Roseibacterium sp.), Phyllobacteriaceae (Nitratireductor
sp.) and Rhodospirillaceae (Thalassobaculum sp. and Tageae sp.) (S2 Fig). All the genera expe-
rienced turnovers between LR and HR (Ochiai index, P < 0.05), suggesting that a shift in com-
munity assemblages across the two rainfall events had occurred. Specifically, 81.5% of the
dissimilarity is due to genus replacement between rainfall periods (turnover), with the rest
(18.5%) explained by the nestedness (species loss from rainfall period to rainfall period). Val-
ues of the Pielou’s evenness index (J) during LR and HR ranged from 0.71 to 0.74.

Predictions of the quantitative proportion of individual metabolic pathways related to car-
bon turnover revealed a dominance of carbon fixation (46%) and methane metabolism (40%),
followed by carbohydrate (8%) and lipid metabolisms (6%) (Fig 4A). Despite being more
abundant under LR for the former two, none of the four main metabolic categories changed
significantly between LR and HR. Pairwise tests indicated that 4 out of the 10 carbon process-
ing pathways (Fig 4B) and 10 out of the 76 degradative pathways examined (Fig 4C) were sig-
nificantly (P < 0.05) overrepresented in one of the two rainfall periods (either LR or HR). For
carbon metabolism, the dicarboxylate-hydroxybutyrate cycle was more abundant during LR,
whereas the reductive pentose phosphate cycle, pentose phosphate pathway and reductive
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Fig 4. Prediction of the microbial community metabolic status based on 16S rRNA amplicon sequencing and functional genomics analyses between LR and HR
periods from the bore W4. (a) doughnut chart showing the proportion of the metabolisms considered compared with the total pathways detected and the specific
proportions of methane (green), carbohydrates (red), lipid (light blue and carbon fixation (yellow) metabolisms (derived from KOs). (b) and (c) extended error bar plots
of predictive metagenome pathways differentially abundant between rainfall periods (P < 0.05, White’s non parametric t-test).

https://doi.org/10.1371/journal.pone.0237730.g004
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acetyl-CoA pathway were more abundant during HR. With the exception of the glycogen deg-
radation pathway, all the degradative pathways (arginine, purine, catechol, glucose, salicylate
and aromatic compounds) were more abundant during HR. All pathways tested can be found
in S3 Table.

Discussion
Carbon replenishment in groundwater systems

In groundwater systems, carbon is replenished by diffuse recharge through the unsaturated
zone and/or via direct recharge from surface waters [79]. These processes are linked to rainfall
conditions (i.e. wet/dry periods) and the hydrology of the system. SW/GW interactions drive
OM incorporation into the ecosystem, which is typically characterised by low carbon content
[21].

Aquifer recharge indicators such as tritium, oxygen-18 and deuterium did not vary much
in the SM system between rainfall periods, suggesting limited recharge during our study. Con-
versely, chloride concentrations increased under HR (S4 Table), suggesting intrusion of hyper-
saline water from the surface during this period. These results indicate that carbon and
nutrient inflows occur despite low recharge after rainfall, suggesting that soil zone processing
plays a key role in regulating the biochemical flows at SM aquifer [25].

DOC concentrations show increasing trends after rainfall (HR), although only statistically
significant for W4, indicating some carbon inputs to the system. At bore W4, older (**Cpoc)
and enriched DOC (5"°Cpoc) was found under HR, suggesting a sedimentary organic matter
source, likely subject to microbial reprocessing causing stable isotope enrichment. In contrast,
bore D13 showed stable trends characterised by modern DOC inputs. This difference in bio-
chemical patterns suggests that in situ carbon sources play a central role at bore W4, possibly
in tandem with changes in microbial activity occurring during HR. Meanwhile, bore D13 is
receiving steady inflows of younger (and less microbially recycled) OM.

Patterns of DIC concentrations and 8'*Cp;c were steady across rainfall regimes. Inorganic
dissolution was higher in D13, and input from younger carbonates (the inorganic fraction of
carbon in calcretes) was detected. Overall, our isotopic data from organic and inorganic car-
bon indicated different responses in the upper (northeast, D13) and lower (southwest, W4)
catchments, with D13 showing more modern carbon but less response to the rainfall event.

Groundwater CDOM quality depended on the bore and rainfall period. Humification
(HIXgMm) and fluorescence index (FI) values indicated that CDOM from both bores, regardless
of rainfall period, were dominated by high molecular weight molecules (humic-like fluoro-
phores) associated with the presence of terrestrially derived organic matter (i.e. FI ~ 1.4,
HIXg\>0.9; [76,78]). Furthermore, most CDOM components (C1-C4) were identified as
large molecular weight humic-like compounds derived from terrestrial plant material, with the
exception of C5 which was identified as UVA humic-like, a lower molecular weight compo-
nent that is associated with autochthonous production and microbial processing [74]. The
intensity of components C1-C4 was greater in bore D13 for both rainfall periods, which is con-
sistent with the presence of the more modern and less °C enriched terrestrial carbon at this
site shown by the isotopic data (i.e. >DOC). Fellman et al. [80] also showed an overall decrease
in fluorescence characteristics from the upper to lower catchment in pools of the semiarid Pil-
bara (Western Australia). The fluorescence results indicate that the dominant source of
groundwater carbon at Sturt Meadows aquifer is the terrestrial soil. However, during HR, bore
W4 shows elevated BIX (>1.5) values, indicating the presence of CDOM with an autochtho-
nous origin (i.e. microbially derived; [81]), along with an increased relative contributions of a
lower molecular weight component (i.e. C5) at this bore. This is again consistent with the
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isotopic results, and suggests that the HR event is stimulating specific microbial activity at this
site, leading to changes in the recycling of older organic matter, and stable isotopic
enrichment.

One potential explanation for this is the infiltration of ions from hypersaline surficial soils
into the groundwater during HR, as well as potential mixing with the adjacent lake Raeside
(i.e. increased Cl concentrations during HR, S4 Table), forming a groundwater estuary [39].
Autochthonous CDOM is more common in estuarine and marine environments compared to
freshwater bodies [82] and has been reported across microtidal subterranean estuaries [83].
The occurrence of autochthonous CDOM at W4 but not D13 may relate to either its geology
(W4 is in calcrete, while D13 has a higher proportion of clay), or its position in the lower half
of the bore field which is hydrologically nearer to the neighbouring saline systems. Incorpo-
ration of further data from other boreholes across the two geological sectors is needed to fully
elucidate the mechanisms underpinning these observations.

One alternative explanation for the CDOM results would be an influx of photochemically
altered older carbon from the overlying soils, as the non-mineralized fraction of photobleached
CDOM has optical properties that are similar to estuarine and marine CDOM [75,81]. How-
ever, there is no obvious explanation as to why this should occur only around bore W4.

Opverall, our results suggest that rainfall events play a role in regulating carbon stocks at the
SM calcrete, but that the resultant changes are not straightforward. The rainfall events mea-
sured were not substantial enough to trigger a full hydrological recharge of the system—some-
thing that will become more common with the declining rainfall in the Yilgarn region—but
nonetheless sufficiently affected the lower part of the bore field to drive changes in the OM
type. To understand the details of this change, a better understanding of the microbiome of
the system and its interaction with changes in water chemistry is required. Several investiga-
tions have stressed the importance of rainfall events as ecological drivers leading to shifts in
biotic community assemblages in groundwater environments [36,84]. The current climate
change scenario predicts reduced rainfall events linked to increased droughts, events that are
likely to affect the biochemical balance sustaining biota in groundwater [85,86]. Modelling of
current ecological dynamics will allow prediction of future effects to the vital (and too often
taken for granted) ecosystem services provided by groundwater environments.

Microbial patterns and carbon pathways

The studied rainfall events triggered shifts in the microbial community assemblages in bore
W4. Under both rainfall conditions, the microbial community was typical of saline and hyper-
saline environments [87,88]. Rhodobacteracea, the most widely distributed bacteria in marine
environments [89], was found to be the most dominant family on site. Interestingly, families
that were highly abundant under HR (i.e. Phyllobacteriaceae and Rhodospirillaceae) were
scarce under the LR period, indicating that rainfall provides conditions for their proliferation;
this is again consistent with the findings from the carbon isotopic and fluorescence analyses
that there is a change in microbial activity during HR. Conversely, the vast majority of other
families-especially Pseudomonadacea, Planococcaceae and Caulobacteraceae—were only pres-
ent during LR. Genus level analysis indicated a more abundant and diverse community under
LR than HR. Decline in biodiversity during recharge events has been ascribed to dilution pro-
cesses caused by water inflows linked to storm events decreasing the density of micro-organ-
isms and thus their detectability [90], and low recharge regimes have been suggested hosting
the baseline autochthonous microbial community [91]. While dilution processes may play a
role at SM calcrete, a more comprehensive understanding of the microbial ecological dynamics
and their variation over time is needed, requiring further long-term investigation.
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The putative assessment of pathways related to cells’ carbon metabolisms provided evidence
for inorganic carbon fixation and methane pathways (i.e. methane oxidation), two of the most
common biochemical routes reported in groundwater systems [32,92,93]. No significant
changes in the proportions of each of the main pathways were detected between LR and HR.
In a recent study, Hofmann and Griebler [20] tested the ‘priming effect’ —the activation of
microbial growth and OM transformation under increased OM availability—in groundwater.
After a series of laboratory experiments under increasing nutrient concentrations, no evidence
of priming could be observed. While in overall agreement with these findings, our investiga-
tion of specific metabolic pathways revealed a substantial increase in degradative pathways
under HR in W4, which is again consistent with the fluorescence and isotopic results. Path-
ways involved in breaking down aromatic compounds were the most abundant, accounting
for 50% (5 out of 10) of the degradative metabolisms that significantly increased after rainfall.
Volatile organic compounds, such as toluene, catechol and phenyl acetate, have been found to
be very abundant in contaminated aquifers [94,95,96] and may also occur naturally in the
hypersaline lakes of Western Australia [97]. Aromatic compounds have been found leaching
into groundwater after rainfall and shifting the character of DOM in sandy aquifers [21], con-
firming their importance as biochemical drivers in typically low energy systems [98]. After
rainfall, the microbial community in W4 seemed to profit from increases and changes in OM,
as indicated by the high abundances of taxa potentially involved in aromatic compound degra-
dation such as Stappia sp., Roseibacterium sp., Tageae sp. and Thalassobaculum sp. [89,99].
Taxa with a high affinity to denitrification processes such as Paracoccus sp., Roseovarius sp.,
Brevundimonas sp. and Planomicrobium sp. [89,100,101], dominated under LR. However,
denitrifying Nitratireductur sp. was also present under HR, suggesting that nitrogen (nitrates,
nitrites and ammonia) provides basal energy sources under both rainfall conditions. However,
additional investigations on specific nitrogen pathways of SM calcrete bacteria will be neces-
sary to elucidate this further.

Degradation of glucose (polysaccharide of glucose) also increased under HR, suggesting
adaptations to the increased OM. During these conditions, abundances of Pseudomonas sp.,
one of the most opportunistic and versatile bacteria on earth—plummeted, probably due to
the repressing effect of glucose on the expression of several genes [102]. The other three degra-
dative metabolic pathways which were more abundant after rainfall, arginine, ornithine and
purine, constitute catabolic pathways whose main product is ammonia [103]. High ammonia
concentrations were detected under HR [41], previously ascribed to dissolution and overland
transport of animal waste [47], and might represent a compendium of nutrient inputs and
metabolic production. The only degradative pathway that was significantly overrepresented
during LR was the degradation of glycogen, the primary carbon and energy storage compound
of many bacteria [104]. Our results are in line with Yamamotoya et al. [105], suggesting that
this polysaccharide of glucose is key to long-term bacterial survival and is utilised when carbon
sources become limiting, as per the case of the LR period.

Another pathway that followed this decreasing trend after rainfall was the dicarboxylate-
hydroxybutyrate cycle. Characteristic for microaerophiles and anaerobes [106], this cycle is
considered ‘energetically efficient’ in contrast to other autotrophic carbon fixation pathways
[107]. A plausible explanation is that the dicarboxylate-hydroxybutyrate pathway is activated
when OM is scarce (such as LR), and uncommon under HR when OM is more available. In
addition to pathways involving OM processing, those involving inorganic carbon fixations,
namely the reductive acetyl-CoA pathway and reductive pentose phosphate cycle, also
increased after rainfall. Inorganic incorporation might play a role in natural carbon fixation
and cycling in groundwater microbes [108], an assumption that has rarely been tested.

PLOS ONE | https://doi.org/10.1371/journal.pone.0237730  August 28, 2020 14/22


https://doi.org/10.1371/journal.pone.0237730

PLOS ONE

Tracking groundwater organic inputs

Conclusions

A combination of biochemical and genetic data allowed preliminary untangling of the bio-
chemical function regulating microbial communities at the SM calcrete (Fig 5). Given their
importance in allowing the transition between abiotic to biotic frameworks, bacteria are vital
in shaping the biochemical flows regulating subterranean biodiversity [109]. However, despite
their importance, many questions about subterranean microbial processes remain unresolved.
Indeed, the fields of groundwater ecology and subterranean microbiology would mutually
benefit from the integration of respective insights. Due to increased natural and anthropic
pressures, subterranean biotic communities are currently being exposed to increased losses of
taxonomical and functional diversity, leading to poorer and more fragile groundwater ecosys-
tems [110]. Further medium to long term interdisciplinary studies monitoring the changes in
groundwater ecological dynamics will allow to assess the impact of climate changes on one of
the most essential ecosystems in the world.

Supporting information

S1 Table. DOC (Dissolved Organic Carbon) and DIC (Dissolved Inorganic Carbon) con-
centrations (mg/L), 3">°C DOC, "*C DIC, pMC DOC, A'*C DOC, Conventional Age DOC,
pMC DIC, A™C DIC, Conventional Age DIC for the bores W4 and D13. BP: before present
with present being 1950 AD; pMC: percent of modern carbon.

(DOCX)

$2 Table. Fluorescence/absorbance indices and their definitions. Adapted from Coble et al.

[111]. Note: em = emission wavelengths, ex = excitation wavelengths.
(DOCX)

$3 Table. Abundances of PICRUSt2 outputs relating to carbon metabolism (KO, level 3)
and degradative pathways (MetaCyc). Pathways in bold indicate the significantly (P < 0.05)
overrepresented pathways in one of the two rainfall periods.

(DOCX)

$4 Table. Hydrochemical values of the bores D13 and W4 under LR and HR. Na: Not avail-
able. Units of 8'®0 and *H in per mil (%o), and units of tritium in TU (Tritium Units).
(DOCX)

S1 Fig. Two-dimensional (left panel) and three-dimensional (mid panel) fluorescence land-
scapes, and the excitation (grey line) and emission (black line) spectra (right panel) for the five
different components identified by the PARAFAC model. Intensity is scaled to a maximum
fluorescence of 1.

(DOCX)

S2 Fig. Bar plots illustrating the abundances of genus and families under LR and HR.
Abundances corresponding to the 37 ZOTUs without a reference/belonging to uncultured
bacterium were removed from the figure for clarity purposes.

(DOCX)

Acknowledgments

We wish to acknowledge the traditional custodians of the land, the Wongai people, and their
elders, past, present and emerging. We acknowledge and respect their continuing culture and
the contribution they make to the life of Yilgarn region. The authors thank Flora, Peter and

PLOS ONE | https://doi.org/10.1371/journal.pone.0237730  August 28, 2020 15/22


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237730.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237730.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237730.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237730.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237730.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237730.s006
https://doi.org/10.1371/journal.pone.0237730

PLOS ONE Tracking groundwater organic inputs

" |Unsaturated zone

Saturated zone

Terrestrially

on Toluene  Salycilate e
I i CDOM
Glucose 3
Cathecol 0@ E N/\/\d\””
o Phenylacetate Arginine
(;Cl-methylcatecol N\H?\
HN OH
NH,
Ornithine

Impermeable layer

Fig 5. Scheme of the main degradative pathways and biochemical patterns under HR. (a) glucose degradation, (b) aromatic degradation, (c) arginine and ornithine
degradation, (d) purine degradation, (e) DOC replenishment inferred from isotopic data, (f) terrestrially derived CDOM inflows (fluorescence analysis) and (g) increase
in ammonia concentrations as a result of nutrients inputs from the surface and microbial metabolic activities (purine and amino acid degradation).

https://doi.org/10.1371/journal.pone.0237730.9g005

Paul Axford of the Meadows Station for their kindness and generosity in providing both
accommodation and access to their property.

Author Contributions
Conceptualization: Mattia Sacco, William F. Humphreys.

Data curation: Mattia Sacco, Jen A. Middleton, Nicole E. White, Matthew Campbell, Masha
Mousavi-Derazmahalleh, Alex Laini, Quan Hua, Karina Meredith.

Formal analysis: Mattia Sacco, Jen A. Middleton, Nicole E. White, Matthew Campbell, Masha
Mousavi-Derazmahalleh, Alex Laini, Quan Hua.

Funding acquisition: William F. Humpbhreys, Nicole E. White, Steven J. B. Cooper, Kliti
Grice.

PLOS ONE | https://doi.org/10.1371/journal.pone.0237730  August 28, 2020 16/22


https://doi.org/10.1371/journal.pone.0237730.g005
https://doi.org/10.1371/journal.pone.0237730

PLOS ONE

Tracking groundwater organic inputs

Investigation: Mattia Sacco, Alison J. Blyth, Masha Mousavi-Derazmahalleh, Christian
Griebler.

Methodology: Mattia Sacco, Alison J. Blyth, Jen A. Middleton, Nicole E. White, Matthew
Campbell, Masha Mousavi-Derazmahalleh, Karina Meredith.

Resources: Alison J. Blyth, Quan Hua, Karina Meredith, Sebastien Allard, Pauline Grierson.
Supervision: William F. Humphreys, Quan Hua.

Validation: Mattia Sacco, Alison J. Blyth, Steven J. B. Cooper, Sebastien Allard.

Writing - original draft: Mattia Sacco, Jen A. Middleton.

Writing - review & editing: Alison J. Blyth, William F. Humphreys, Nicole E. White, Matthew
Campbell, Alex Laini, Quan Hua, Karina Meredith, Steven J. B. Cooper, Christian Griebler,
Sebastien Allard, Pauline Grierson, Kliti Grice.

References

1. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. The boundless carbon
cycle. Nature Geoscience. 2009 Sep; 2(9):598—-600.

2. Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY,
Running SW. Contribution of semi-arid ecosystems to interannual variability of the global carbon
cycle. Nature. 2014 May; 509(7502):600-3. https://doi.org/10.1038/nature13376 PMID: 24847888

3. Schimel DS. Terrestrial ecosystems and the carbon cycle. Global change biology. 1995 Feb; 1(1):77—
91.

4. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. Acceleration of global warming due to carbon-
cycle feedbacks in a coupled climate model. Nature. 2000 Nov; 408(6809):184-7. https://doi.org/10.
1038/35041539 PMID: 11089968

5. Stassen P. Carbon cycle: Global warming then and now. Nature Geoscience. 2016 Apr; 9(4):268-9.

6. Catalan N, Marcé R, Kothawala DN, Tranvik LJ. Organic carbon decomposition rates controlled by
water retention time across inland waters. Nature Geoscience. 2016 Jul; 9(7):501—4.

7. Chambers LG, Reddy KR, Osborne TZ. Short-term response of carbon cycling to salinity pulses in a
freshwater wetland. Soil Science Society of America Journal. 2011 Sep 1; 75(5):2000-7.

8. Kolmakova OV, Gladyshev MI, Fonvielle JA, Ganzert L, Hornick T, Grossart HP. Effects of zooplank-
ton carcasses degradation on freshwater bacterial community composition and implications for carbon
cycling. Environmental microbiology. 2019 Jan; 21(1):34—49. https://doi.org/10.1111/1462-2920.
14418 PMID: 30246449

9. Drake TW, Raymond PA, Spencer RG. Terrestrial carbon inputs to inland waters: A current synthesis
of estimates and uncertainty. Limnology and Oceanography Letters. 2018 Jun; 3(3):132—42.

10. Kayranli B, Scholz M, Mustafa A, Hedmark A. Carbon storage and fluxes within freshwater wetlands: a
critical review. Wetlands. 2010 Feb 1; 30(1):111-24.

11.  Weishampel P, Kolka R, King JY. Carbon pools and productivity in a 1-km2 heterogeneous forest and
peatland mosaic in Minnesota, USA. Forest Ecology and Management. 2009 Jan 31; 257(2):747-54.

12. Keiluweit M, Wanzek T, Kleber M, Nico P, Fendorf S. Anaerobic microsites have an unaccounted role
in soil carbon stabilization. Nature communications. 2017 Nov 24; 8(1):1-0. https://doi.org/10.1038/
s41467-016-0009-6

13. Dragoni W, Sukhija BS. Climate change and groundwater: a short review. Geological Society, London,
Special Publications. 2008 Jan 1; 288(1):1-2.

14. Monger HC, Kraimer RA, Khresat SE, Cole DR, Wang X, Wang J. Sequestration of inorganic carbon
in soil and groundwater. Geology. 2015 May 1; 43(5):375-8.

15. Viaroli S, Mastrorillo L, Lotti F, Paolucci V, Mazza R. The groundwater budget: a tool for preliminary
estimation of the hydraulic connection between neighboring aquifers. Journal of Hydrology. 2018 Jan
1; 556:72—-86.

16. Glanville K, Ryan T, Tomlinson M, Muriuki G, Ronan M, Pollett A. A method for catchment scale map-
ping of groundwater-dependent ecosystems to support natural resource management (Queensland,
Australia). Environmental management. 2016 Feb 1; 57(2):432—49. https://doi.org/10.1007/s00267-
015-0612-z PMID: 26404433

PLOS ONE | https://doi.org/10.1371/journal.pone.0237730  August 28, 2020 17/22


https://doi.org/10.1038/nature13376
http://www.ncbi.nlm.nih.gov/pubmed/24847888
https://doi.org/10.1038/35041539
https://doi.org/10.1038/35041539
http://www.ncbi.nlm.nih.gov/pubmed/11089968
https://doi.org/10.1111/1462-2920.14418
https://doi.org/10.1111/1462-2920.14418
http://www.ncbi.nlm.nih.gov/pubmed/30246449
https://doi.org/10.1038/s41467-016-0009-6
https://doi.org/10.1038/s41467-016-0009-6
https://doi.org/10.1007/s00267-015-0612-z
https://doi.org/10.1007/s00267-015-0612-z
http://www.ncbi.nlm.nih.gov/pubmed/26404433
https://doi.org/10.1371/journal.pone.0237730

PLOS ONE

Tracking groundwater organic inputs

17.

18.

19.

20.

21,

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Stegen JC, Fredrickson JK, Wilkins MJ, Konopka AE, Nelson WC, Arntzen EV, Chrisler WB, Chu RK,
Danczak RE, Fansler SJ, Kennedy DW. Groundwater—surface water mixing shifts ecological assem-
bly processes and stimulates organic carbon turnover. Nature communications. 2016 Apr 7; 7:11237.
https://doi.org/10.1038/ncomms 11237 PMID: 27052662

Downing JA, Striegl RG. Size, age, renewal, and discharge of groundwater carbon. Inland Waters.
2018 Jan 2; 8(1):122-7.

Chapelle FH, Lovley DR. Rates of microbial metabolism in deep coastal plain aquifers. Appl. Environ.
Microbiol.. 1990 Jun 1; 56(6):1865—74. https://doi.org/10.1128/AEM.56.6.1865-1874.1990 PMID:
16348227

Hofmann R, Griebler C. DOM and bacterial growth efficiency in oligotrophic groundwater: absence of
priming and co-limitation by organic carbon and phosphorus. Aquatic Microbial Ecology. 2018 Feb 7;
81(1):55-71.

McDonough LK, O’Carroll DM, Meredith K, Andersen MS, Briigger C, Huang H, Rutlidge H, Behnke
MI, Spencer RG, McKenna A, Marjo CE. Changes in groundwater dissolved organic matter character
in a coastal sand aquifer due to rainfall recharge. Water research. 2020 Feb 1; 169:115201. https://
doi.org/10.1016/j.watres.2019.115201 PMID: 31675607

Kessler TJ, Harvey CF. The global flux of carbon dioxide into groundwater. Geophysical research let-
ters. 2001 Jan 15; 28(2):279-82.

Meredith KT, Han LF, Hollins SE, Cenddn DI, Jacobsen GE, Baker A. Evolution of chemical and isoto-
pic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for
groundwater dating using radiocarbon. Geochimica et Cosmochimica Acta. 2016 Sep 1; 188:352—67.

Meredith KT, Han LF, Cendén DI, Crawford J, Hankin S, Peterson M, Hollins SE. Evolution of dis-
solved inorganic carbon in groundwater recharged by cyclones and groundwater age estimations
using the 14C statistical approach. Geochimica et Cosmochimica Acta. 2018 Jan 1; 220:483-98.

Baker MA, Valett HM, Dahm CN. Organic carbon supply and metabolism in a shallow groundwater
ecosystem. Ecology. 2000 Nov; 81(11):3133-48.

Neilson BT, Cardenas MB, O’Connor MT, Rasmussen MT, King TV, Kling GW. Groundwater flow and
exchange across the land surface explain carbon export patterns in continuous permafrost water-
sheds. Geophysical Research Letters. 2018 Aug 16; 45(15):7596—605.

Vesper DJ, White WB. Storm pulse chemographs of saturation index and carbon dioxide pressure:
implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell,
Kentucky/Tennessee, USA. Hydrogeology Journal. 2004 Apr 1; 12(2):135—-43.

Manna F, Murray S, Abbey D, Martin P, Cherry J, Parker B. Spatial and temporal variability of ground-
water recharge in a sandstone aquifer in a semiarid region. Hydrology & Earth System Sciences. 2019
Apr 1;23(4).

Foulquier A, Malard F, Mermillod-Blondin F, Montuelle B, Dolédec S, Volat B, Gibert J. Surface water
linkages regulate trophic interactions in a groundwater food web. Ecosystems. 2011 Dec 1; 14
(8):1339-53.

Portillo MC, Porca E, Cuezva S, Canaveras JC, Sanchez-Moral S, Gonzalez JM. Is the availability of
different nutrients a critical factor for the impact of bacteria on subterraneous carbon budgets?. Natur-
wissenschaften. 2009 Sep 1; 96(9):1035-42. https://doi.org/10.1007/s00114-009-0562-5 PMID:
19488732

Simon KS, Benfield EF, Macko SA. Food web structure and the role of epilithic biofilms in cave
streams. Ecology. 2003 Sep; 84(9):2395-406.

Hutchins BT, Engel AS, Nowlin WH, Schwartz BF. Chemolithoautotrophy supports macroinvertebrate
food webs and affects diversity and stability in groundwater communities. Ecology. 2016 Jun; 97
(6):1530—42. https://doi.org/10.1890/15-1129.1 PMID: 27459783

Wegner CE, Gaspar M, Geesink P, Herrmann M, Marz M, Kisel K. Biogeochemical regimes in shallow
aquifers reflect the metabolic coupling of the elements nitrogen, sulfur, and carbon. Appl. Environ.
Microbiol.. 2019 Mar 1; 85(5):02346—18. https://doi.org/10.1128/AEM.02346-18 PMID: 30578263

Hancock PJ, Boulton AJ, Humphreys WF. Aquifers and hyporheic zones: towards an ecological under-
standing of groundwater. Hydrogeology Journal. 2005 Mar 1; 13(1):98-111.

Brankovits D, Pohiman JW, Niemann H, Leigh MB, Leewis MC, Becker KW, lliffe TM, Alvarez F, Leh-
mann MF, Phillips B. Methane-and dissolved organic carbon-fueled microbial loop supports a tropical
subterranean estuary ecosystem. Nature communications. 2017 Nov 28; 8(1):1-2. https://doi.org/10.
1038/s41467-016-0009-6

Reiss J, Perkins DM, Fussmann KE, Krause S, Canhoto C, Romeijn P, Robertson AL. Groundwater
flooding: Ecosystem structure following an extreme recharge event. Science of The Total Environ-
ment. 2019 Feb 20; 652:1252-60. https://doi.org/10.1016/j.scitotenv.2018.10.216 PMID: 30586811

PLOS ONE | https://doi.org/10.1371/journal.pone.0237730  August 28, 2020 18/22


https://doi.org/10.1038/ncomms11237
http://www.ncbi.nlm.nih.gov/pubmed/27052662
https://doi.org/10.1128/AEM.56.6.1865-1874.1990
http://www.ncbi.nlm.nih.gov/pubmed/16348227
https://doi.org/10.1016/j.watres.2019.115201
https://doi.org/10.1016/j.watres.2019.115201
http://www.ncbi.nlm.nih.gov/pubmed/31675607
https://doi.org/10.1007/s00114-009-0562-5
http://www.ncbi.nlm.nih.gov/pubmed/19488732
https://doi.org/10.1890/15-1129.1
http://www.ncbi.nlm.nih.gov/pubmed/27459783
https://doi.org/10.1128/AEM.02346-18
http://www.ncbi.nlm.nih.gov/pubmed/30578263
https://doi.org/10.1038/s41467-016-0009-6
https://doi.org/10.1038/s41467-016-0009-6
https://doi.org/10.1016/j.scitotenv.2018.10.216
http://www.ncbi.nlm.nih.gov/pubmed/30586811
https://doi.org/10.1371/journal.pone.0237730

PLOS ONE

Tracking groundwater organic inputs

37.

38.

39.

40.

41.

42,

43.

44,
45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.

Datry T, Malard F, Gibert J. Response of invertebrate assemblages to increased groundwater
recharge rates in a phreatic aquifer. Journal of the North American Benthological Society. 2005 Sep;
24(3):461-77.

Guzik MT, Austin AD, Cooper SJ, Harvey MS, Humphreys WF, Bradford T, Eberhard SM, King RA,
Leys R, Muirhead KA, Tomlinson M. Is the Australian subterranean fauna uniquely diverse?. Inverte-
brate Systematics. 2011 Mar 4; 24(5):407-18.

Humphreys WF, Watts CH, Cooper SJ, Leijs R. Groundwater estuaries of salt lakes: buried pools of
endemic biodiversity on the western plateau, Australia. Hydrobiologia. 2009 Jun 1; 626(1):79-95.

Sacco M, Blyth A, Bateman PW, Hua Q, Mazumder D, White N, Humphreys WF, Laini A, Griebler C,
Grice K. New light in the dark-a proposed multidisciplinary framework for studying functional ecology
of groundwater fauna. Science of the Total Environment. 2019 Jan 24.

Sacco M, Blyth AJ, Humphreys WF, Karasiewicz S, Meredith KT, Laini A, Cooper SJ, Bateman PW,
Grice K. Stygofaunal community trends along varied rainfall conditions: deciphering ecological niche
dynamics of a shallow calcrete in Western Australia. Ecohydrology. 2020 Jan; 13(1):e2150.

Czarnota K, Champion DC, Goscombe B, Blewett RS, Cassidy KF, Henson PA, Groenewald PB. Geo-
dynamics of the eastern Yilgarn Craton. Precambrian Research. 2010 Nov 15; 183(2):175-202.

Morgan KH. Development, sedimentation and economic potential of palaeoriver systems of the Yil-
garn Craton of Western Australia. Sedimentary Geology. 1993 May; 85:637-56.

Lamplugh GW. Calcrete. Geological Magazine. 1902; 9, 575-575.

Lintern MJ. Exploration for gold using calcrete—lessons from the Yilgarn Craton, Western Australia.
Geochemistry: Exploration, Environment, Analysis. 2001 Aug 1; 1(3):237-52.

Mabbutt JA. Landforms of arid Australia. InArid Lands of Australia 1969 (pp. 11-32). Canberra: ANU
Press.

Bradford TM, Adams M, Guzik MT, Humphreys WF, Austin AD, Cooper SJ. Patterns of population
genetic variation in sympatric chiltoniid amphipods within a calcrete aquifer reveal a dynamic subterra-
nean environment. Heredity. 2013 Jul; 111(1):77-85. https://doi.org/10.1038/hdy.2013.22 PMID:
23549336

Bradford TM. Modes of speciation in subterranean diving beetles from a single calcrete aquifer in Cen-
tral Western Australia (Doctoral dissertation).

Anaconda. Mt Margaret Nickel Cobalt Project: Public Environment Review and Public Environmental
Report for Anaconda Nickel Limited. 2001; Perth, Australia.

Aliford A, Cooper SJ, Humphreys WF, Austin AD. Diversity and distribution of groundwater fauna in a
calcrete aquifer: does sampling method influence the story?. Invertebrate Systematics. 2008 Jun 2; 22
(2):127-38.

Hyde J, Cooper SJ, Humphreys WF, Austin AD, Munguia P. Diversity patterns of subterranean inver-
tebrate fauna in calcretes of the Yilgarn Region, Western Australia. Marine and Freshwater Research.
2018 Jan 30; 69(1):114-21.

APHA. Standard methods for the examination of water and wastewater. 2012; 20th edn. American
Public Health Association, Washington DC

Dogramaci S, Skrzypek G. Unravelling sources of solutes in groundwater of an ancient landscape in
NW Australia using stable Sr, H and O isotopes. Chemical Geology. 2015 Jan 30; 393:67—78.

Hua Q, Jacobsen GE, Zoppi U, Lawson EM, Williams AA, Smith AM, McGann MJ. Progress in radio-
carbon target preparation at the ANTARES AMS Centre. Radiocarbon. 2001; 43(2A):275-82.

Bryan E, Meredith KT, Baker A, Andersen MS, Post VE. Carbon dynamics in a Late Quaternary-age
coastal limestone aquifer system undergoing saltwater intrusion. Science of the Total Environment.
2017 Dec 31; 607:771-85. https://doi.org/10.1016/j.scitotenv.2017.06.094 PMID: 28711007

Fink D, Hotchkis M, Hua Q, Jacobsen G, Smith AM, Zoppi U, Child D, Mifsud C, van der Gaast H, Wil-
liams A, Williams M. The antares AMS facility at ANSTO. Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms. 2004 Aug 1; 223:109-15.

Stuiver M, Polach HA. Discussion reporting of 14 C data. 1977; Radiocarbon, 19, 355-363.

Stedmon CA, Markager S. Resolving the variability in dissolved organic matter fluorescence in a tem-
perate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography. 2005 Mar;
50(2):686-97.

Meredith K, Cenddn DI, Pigois JP, Hollins S, Jacobsen G. Using 14C and 3H to delineate a recharge
‘window’into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia. Sci-
ence of the Total Environment. 2012 Jan 1; 414:456—69. https://doi.org/10.1016/j.scitotenv.2011.10.
016 PMID: 22104381

PLOS ONE | https://doi.org/10.1371/journal.pone.0237730  August 28, 2020 19/22


https://doi.org/10.1038/hdy.2013.22
http://www.ncbi.nlm.nih.gov/pubmed/23549336
https://doi.org/10.1016/j.scitotenv.2017.06.094
http://www.ncbi.nlm.nih.gov/pubmed/28711007
https://doi.org/10.1016/j.scitotenv.2011.10.016
https://doi.org/10.1016/j.scitotenv.2011.10.016
http://www.ncbi.nlm.nih.gov/pubmed/22104381
https://doi.org/10.1371/journal.pone.0237730

PLOS ONE

Tracking groundwater organic inputs

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight
R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings
of the national academy of sciences. 2011 Mar 15; 108(Supplement 1):4516-22.

Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyano-
bacteria and plastids by small subunit rRNA sequence analysis 1. Journal of Eukaryotic Microbiology.
1999 Jul; 46(4):327-38. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x PMID: 10461381

Drummond AJ, Ashton B, Buxton S, Cheung, M, Cooper A, Duran C, et al. (2011). Geneious v5.4.
Available at http://www.geneious.com.

Edgar, RC. UNOISE2: improved error-correction for lllumina 16S and ITS amplicon sequencing. 2016;
bioRxiv. Available at http://biorxiv.org/content/early/2016/10/15/081257abstract.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of
molecular biology. 1990 Oct 5; 215(3):403—10. https://doi.org/10.1016/S0022-2836(05)80360-2
PMID: 2231712

Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile
DE, Thurber RL, Knight R, Beiko RG. Predictive functional profiling of microbial communities using
16S rRNA marker gene sequences. Nature biotechnology. 2013 Sep; 31(9):814. https://doi.org/10.
1038/nbt.2676 PMID: 23975157

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research.
2000 Jan 1; 28(1):27-30. https://doi.org/10.1093/nar/28.1.27 PMID: 10592173

Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick
J, Rhee SY, Tissier C. MetaCyc: a multiorganism database of metabolic pathways and enzymes.
Nucleic acids research. 2006 Jan 1; 34(suppl_1):D511-6.

Pucher M, Wiinsch U, Weigelhofer G, Murphy K, Hein T, Graeber D. staRdom: Versatile Software for
Analyzing Spectroscopic Data of Dissolved Organic Matter in R. Water. 2019 Nov; 11(11):2366.

Lawaetz AJ, Stedmon CA. Fluorescence intensity calibration using the Raman scatter peak of water.
Applied spectroscopy. 2009 Aug 1; 63(8):936—40. https://doi.org/10.1366/000370209788964548
PMID: 19678992

Murphy KR, Stedmon CA, Graeber D, Bro R. Fluorescence spectroscopy and multi-way techniques.
PARAFAC. Analytical Methods. 2013; 5(23):6557—66.

Ochiai A. Zoogeographical studies on the soleoid fishes found in Japan and its neigbouring
regions.1957; Bulletin of the Japanese Society of Scientific Fisheries 22, 526-530.

McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of
microbiome census data. PloS one. 2013; 8(4).

Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and func-
tional profiles. Bioinformatics. 2014 Nov 1; 30(21):3123—4. https://doi.org/10.1093/bioinformatics/
btu494 PMID: 25061070

Fellman JB, Hood E, Spencer RG. Fluorescence spectroscopy opens new windows into dissolved
organic matter dynamics in freshwater ecosystems: A review. Limnology and oceanography. 2010
Nov; 55(6):2452—-62.

Hansen AM, Kraus TE, Pellerin BA, Fleck JA, Downing BD, Bergamaschi BA. Optical properties of dis-
solved organic matter (DOM): Effects of biological and photolytic degradation. Limnology and Ocean-
ography. 2016 May; 61(3):1015-32.

Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved
organic matter. Environmental science & technology. 2002 Feb 15; 36(4):742—6.

Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F. Differentiating with fluorescence spec-
troscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere. 1999 Jan
1; 38(1):45-50. https://doi.org/10.1016/s0045-6535(98)00166-0 PMID: 10903090

McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT. Spectrofluorometric char-
acterization of dissolved organic matter for indication of precursor organic material and aromaticity.
Limnology and Oceanography. 2001 Jan; 46(1):38—48.

Meredith KT, Baker A, Andersen MS, O’Carroll DM, Rutlidge H, McDonough LK, Oudone P, Bryan E,
Zainuddin NS. Isotopic and chromatographic fingerprinting of the sources of dissolved organic carbon
in a shallow coastal aquifer. Hydrology and Earth System Sciences Discussions. 2019 Feb 12:1-20.

Fellman JB, Dogramaci S, Skrzypek G, Dodson W, Grierson PF. Hydrologic control of dissolved
organic matter biogeochemistry in pools of a subtropical dryland river. Water Resources Research.
2011 Jun; 47(6).

Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K. Absorption spectral slopes and
slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved
organic matter. Limnology and Oceanography. 2008 May; 53(3):955-69.

PLOS ONE | https://doi.org/10.1371/journal.pone.0237730  August 28, 2020 20/22


https://doi.org/10.1111/j.1550-7408.1999.tb04612.x
http://www.ncbi.nlm.nih.gov/pubmed/10461381
http://www.geneious.com
http://biorxiv.org/content/early/2016/10/15/081257abstract
https://doi.org/10.1016/S0022-2836%2805%2980360-2
http://www.ncbi.nlm.nih.gov/pubmed/2231712
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1038/nbt.2676
http://www.ncbi.nlm.nih.gov/pubmed/23975157
https://doi.org/10.1093/nar/28.1.27
http://www.ncbi.nlm.nih.gov/pubmed/10592173
https://doi.org/10.1366/000370209788964548
http://www.ncbi.nlm.nih.gov/pubmed/19678992
https://doi.org/10.1093/bioinformatics/btu494
https://doi.org/10.1093/bioinformatics/btu494
http://www.ncbi.nlm.nih.gov/pubmed/25061070
https://doi.org/10.1016/s0045-6535%2898%2900166-0
http://www.ncbi.nlm.nih.gov/pubmed/10903090
https://doi.org/10.1371/journal.pone.0237730

PLOS ONE

Tracking groundwater organic inputs

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92,

93.

94.

95.

96.

97.

98.

99.

100.

101.

Santos L, Pinto A, Filipe O, Cunha A, Santos EB, Almeida A. Insights on the optical properties of estu-
arine DOM-hydrological and biological Influences. PloS one. 2016; 11(5).

Couturier M, Nozais C, Chaillou G. Microtidal subterranean estuaries as a source of fresh terrestrial
dissolved organic matter to the coastal ocean. Marine Chemistry. 2016 Nov 20; 186:46-57.

Wu X, Wu L, LiuY, Zhang P, Li Q, Zhou J, Hess NJ, Hazen TC, Yang W, Chakraborty R. Microbial
interactions with dissolved organic matter drive carbon dynamics and community succession. Fron-
tiers in microbiology. 2018 Jun 8; 9:1234. https://doi.org/10.3389/fmicb.2018.01234 PMID: 29937762

Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A. Beneath the
surface of global change: Impacts of climate change on groundwater. Journal of Hydrology. 2011 Aug
5; 405(3—4):532—-60.

Mammola S, Cardoso P, Culver DC, Deharveng L, Ferreira RL, FiSer C, Galassi DM, Griebler C,
Halse S, Humphreys WF, Isaia M. Scientists’ warning on the conservation of subterranean ecosys-
tems. BioScience. 2019 Aug 1; 69(8):641-50.

Stepanov VG, Xiao Y, Tran Q, Rojas M, Willson RC, Fofanov Y, Fox GE, Roberts DJ. The presence of
nitrate dramatically changed the predominant microbial community in perchlorate degrading cultures
under saline conditions. BMC microbiology. 2014 Dec 1; 14(1):225.

Unno T, Kim J, Kim Y, Nguyen SG, Guevarra RB, Kim GP, Lee JH, Sadowsky MJ. Influence of seawa-
ter intrusion on microbial communities in groundwater. Science of the Total Environment. 2015 Nov 1;
532:337-43. https://doi.org/10.1016/j.scitotenv.2015.05.111 PMID: 26081736

Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macian MC, Rosenberg E, DeLong EF, Stackebrandt E,
Lory S, Thompson F. The Family Rhodobacteraceae. The Prokaryotes: Alphaproteobacteria and
Betaproteobacteria. Rosenberg E., editor. 2014:439-512.

Pronk M, Goldscheider N, Zopfi J. Microbial communities in karst groundwater and their potential use
for biomonitoring. Hydrogeology Journal. 2009 Feb 1; 17(1):37—-48.

Farnleitner AH, Wilhartitz |, Ryzinska G, Kirschner AK, Stadler H, Burtscher MM, Hornek R, Szewzyk
U, Herndl G, Mach RL. Bacterial dynamics in spring water of alpine karst aquifers indicates the pres-
ence of stable autochthonous microbial endokarst communities. Environmental Microbiology. 2005
Aug; 7(8):1248-59. https://doi.org/10.1111/j.1462-2920.2005.00810.x PMID: 16011762

Rightmire CT, Hanshaw BB. Relationship between the carbon isotope composition of soil CO2 and
dissolved carbonate species in groundwater. Water Resources Research. 1973 Aug; 9(4):958-67.

Ulliman WJ, Chang B, Miller DC, Madsen JA. Groundwater mixing, nutrient diagenesis, and discharges
across a sandy beachface, Cape Henlopen, Delaware (USA). Estuarine, Coastal and Shelf Science.
2003 Jun 1; 57(3):539-52.

Abbai NS, Govender A, Shaik R, Pillay B. Pyrosequence analysis of unamplified and whole genome
amplified DNA from hydrocarbon-contaminated groundwater. Molecular biotechnology. 2012 Jan 1;
50(1):39-48. https://doi.org/10.1007/s12033-011-9412-8 PMID: 21656086

Langwaldt JH, Miinster U, Puhakka JA. Characterization and microbial utilization of dissolved organic
carbon in groundwater contaminated with chlorophenols. Chemosphere. 2005 May 1; 59(7):983-96.
https://doi.org/10.1016/j.chemosphere.2004.11.036 PMID: 15823332

Shinoda Y, Sakai Y, Uenishi H, Uchihashi Y, Hiraishi A, Yukawa H, Yurimoto H, Kato N. Aerobic and
anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1.
Appl. Environ. Microbiol.. 2004 Mar 1; 70(3):1385-92. https://doi.org/10.1128/aem.70.3.1385-1392.
2004 PMID: 15006757

Ruecker A, Weigold P, Behrens S, Jochmann M, Laaks J, Kappler A. Predominance of biotic over abi-
otic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia. Environ-
mental science & technology. 2014 Aug 19; 48(16):9170-8.

Filip Z, Smed-Hildmann R. Does fossil plant material release humic substances into groundwater?.
Science of the total environment. 1992 May 30; 117:313-24.

Dutton PL, Evans WC. Metabolism of aromatic compounds by Rhodospirillaceae. The photosynthetic
bacteria. 1978:719-26.

Chen D, Wang H, Ji B, Yang K, Wei L, Jiang Y. A high-throughput sequencing study of bacterial com-
munities in an autohydrogenotrophic denitrifying bio-ceramsite reactor. Process Biochemistry. 2015
Nov 1;50(11):1904-10.

Tsubouchi T, Koyama S, Mori K, Shimane Y, Usui K, Tokuda M, Tame A, Uematsu K, Maruyama T,
Hatada Y. Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subsea-
floor sediment. International journal of systematic and evolutionary microbiology. 2014 Nov 1; 64
(11):3709-16.

PLOS ONE | https://doi.org/10.1371/journal.pone.0237730  August 28, 2020 21/22


https://doi.org/10.3389/fmicb.2018.01234
http://www.ncbi.nlm.nih.gov/pubmed/29937762
https://doi.org/10.1016/j.scitotenv.2015.05.111
http://www.ncbi.nlm.nih.gov/pubmed/26081736
https://doi.org/10.1111/j.1462-2920.2005.00810.x
http://www.ncbi.nlm.nih.gov/pubmed/16011762
https://doi.org/10.1007/s12033-011-9412-8
http://www.ncbi.nlm.nih.gov/pubmed/21656086
https://doi.org/10.1016/j.chemosphere.2004.11.036
http://www.ncbi.nlm.nih.gov/pubmed/15823332
https://doi.org/10.1128/aem.70.3.1385-1392.2004
https://doi.org/10.1128/aem.70.3.1385-1392.2004
http://www.ncbi.nlm.nih.gov/pubmed/15006757
https://doi.org/10.1371/journal.pone.0237730

PLOS ONE

Tracking groundwater organic inputs

102.

103.

104.

105.

106.

107.

108.

109.

110.

Rojo F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interac-
tions with the environment. FEMS microbiology reviews. 2010 Sep 1; 34(5):658—-84. https://doi.org/10.
1111/1.1574-6976.2010.00218.x PMID: 20412307

Schneider BL, Kiupakis AK, Reitzer LJ. Arginine catabolism and the arginine succinyltransferase path-
way in Escherichia coli. Journal of bacteriology. 1998 Aug 15; 180(16):4278-86. https://doi.org/10.
1128/JB.180.16.4278-4286.1998 PMID: 9696779

Park JT, Shim JH, Tran PL, Hong IH, Yong HU, Oktavina EF, Nguyen HD, Kim JW, Lee TS, Park SH,
Boos W. Role of maltose enzymes in glycogen synthesis by Escherichia coli. Journal of bacteriology.
2011 May 15; 193(10):2517-26. https://doi.org/10.1128/JB.01238-10 PMID: 21421758

Yamamotoya T, Dose H, Tian Z, Fauré A, Toya Y, Honma M, Igarashi K, Nakahigashi K, Soga T, Mori
H, Matsuno H. Glycogen is the primary source of glucose during the lag phase of E. coli proliferation.
Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2012 Dec 1; 1824(12):1442-8.

Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl.
Environ. Microbiol.. 2011 Mar 15; 77(6):1925-36. https://doi.org/10.1128/AEM.02473-10 PMID:
21216907

Lannes R, Olsson-Francis K, Lopez P, Bapteste E. Carbon fixation by marine ultrasmall prokaryotes.
Genome biology and evolution. 2019 Apr; 11(4):1166—77. https://doi.org/10.1093/gbe/evz050 PMID:
30903144

Nowak M, Schwab VF, Lazar CS, Behrendt T, Kohlhepp B, Totsche KU, Kiisel K, Trumbore SE. Car-
bon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial
communities in two limestone aquifer assemblages. Hydrology and Earth System Sciences. 2017; 21
(9):4283-300.

Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshwater Biology. 2009
Apr; 54(4):649-77.

Mammola S, Piano E, Cardoso P, Vernon P, Dominguez-Villar D, Culver DC, Pipan T, Isaia M. Cli-
mate change going deep: the effects of global climatic alterations on cave ecosystems. The Anthropo-
cene Review. 2019 Apr; 6(1-2):98-116.

PLOS ONE | https://doi.org/10.1371/journal.pone.0237730  August 28, 2020 22/22


https://doi.org/10.1111/j.1574-6976.2010.00218.x
https://doi.org/10.1111/j.1574-6976.2010.00218.x
http://www.ncbi.nlm.nih.gov/pubmed/20412307
https://doi.org/10.1128/JB.180.16.4278-4286.1998
https://doi.org/10.1128/JB.180.16.4278-4286.1998
http://www.ncbi.nlm.nih.gov/pubmed/9696779
https://doi.org/10.1128/JB.01238-10
http://www.ncbi.nlm.nih.gov/pubmed/21421758
https://doi.org/10.1128/AEM.02473-10
http://www.ncbi.nlm.nih.gov/pubmed/21216907
https://doi.org/10.1093/gbe/evz050
http://www.ncbi.nlm.nih.gov/pubmed/30903144
https://doi.org/10.1371/journal.pone.0237730

