2,965 research outputs found

    Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar

    Get PDF
    In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flight

    Atom Interferometers

    Full text link
    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review we first describe the basic tools for coherent atom optics including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on AtomChips. Then we review scientific advances in a broad range of fields that have resulted from the application of atom interferometers. These are grouped in three categories: (1) fundamental quantum science, (2) precision metrology and (3) atomic and molecular physics. Although some experiments with Bose Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e. phenomena where each single atom interferes with itself.Comment: submitted to Reviews of Modern Physic

    An astronomically dated record of Earth's climate and its predictability over the last 66 million years.

    Get PDF
    Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics

    Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline:evidence-based advances in monitoring and treatment

    Get PDF
    THE KIDNEY DISEASE: Improving Global Outcomes (KDIGO) Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease represents the first KDIGO guideline on this subject. The guideline comes at a time when advances in diabetes technology and therapeutics offer new options to manage the large population of patients with diabetes and chronic kidney disease (CKD) at high risk of poor health outcomes. An enlarging base of high-quality evidence from randomized clinical trials is available to evaluate important new treatments offering organ protection, such as sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists. The goal of the new guideline is to provide evidence-based recommendations to optimize the clinical care of people with diabetes and CKD by integrating new options with existing management strategies. In addition, the guideline contains practice points to facilitate implementation when insufficient data are available to make well-justified recommendations or when additional guidance may be useful for clinical application. The guideline covers comprehensive care of patients with diabetes and CKD, glycemic monitoring and targets, lifestyle interventions, antihyperglycemic therapies, and self-management and health systems approaches to management of patients with diabetes and CKD

    Search for Charginos with a Small Mass Difference with the Lightest Supersymmetric Particle at \sqrt{s} = 189 GeV

    Get PDF
    A search for charginos nearly mass-degenerate with the lightest supersymmetric particle is performed using the 176 pb^-1 of data collected at 189 GeV in 1998 with the L3 detector. Mass differences between the chargino and the lightest supersymmetric particle below 4 GeV are considered. The presence of a high transverse momentum photon is required to single out the signal from the photon-photon interaction background. No evidence for charginos is found and upper limits on the cross section for chargino pair production are set. For the first time, in the case of heavy scalar leptons, chargino mass limits are obtained for any \tilde{\chi}^{+-}_1 - \tilde{\chi}^0_1 mass difference

    Search for Low Scale Gravity Effects in e+e- Collisions at LEP

    Get PDF
    Recent theories propose that quantum gravity effects may be observable at LEP energies via gravitons that couple to Standard Model particles and propagate into extra spatial dimensions. The associated production of a graviton and a photon is searched for as well as the effects of virtual graviton exchange in the processes: e+e- -> gamma gamma, ZZ, WW, mu mu, tau tau, qq and ee No evidence for this new interaction is found in the data sample collected by the L3 detector at LEP at centre-of-mass energies up to 183 GeV. Limits close to 1 TeV on the scale of this new scenario of quantum gravity are set

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Executive summary of the KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease:an update based on rapidly emerging new evidence

    Get PDF
    The Kidney Disease: Improving Global Outcomes (KDIGO) 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease (CKD) represents a focused update of the KDIGO 2020 guideline on the topic. The guideline targets a broad audience of clinicians treating people with diabetes and CKD. Topic areas for which recommendations are updated based on new evidence include Chapter 1: Comprehensive care in patients with diabetes and CKD and Chapter 4: Glucose-lowering therapies in patients with type 2 diabetes (T2D) and CKD. The content of previous chapters on Glycemic monitoring and targets in patients with diabetes and CKD (Chapter 2), Lifestyle interventions in patients with diabetes and CKD (Chapter 3), and Approaches to management of patients with diabetes and CKD (Chapter 5) has been deemed current and was not changed. This guideline update was developed according to an explicit process of evidence review and appraisal. Treatment approaches and guideline recommendations are based on systematic reviews of relevant studies and appraisal of the quality of the evidence, and the strength of recommendations followed the “Grading of Recommendations Assessment, Development and Evaluation” (GRADE) approach. Limitations of the evidence are discussed, and areas for which additional research is needed are presented
    corecore