70 research outputs found

    Oystershell Scale: An Invasive Threat to Aspen Conservation

    Get PDF
    Aspen decline is an acute and chronic problem in Arizona, where high levels of overstory mortality and a lack of recruitment continue to be observed. Oystershell scale (Lepidosaphes ulmi; OSS), an invasive sapsucking insect, has recently become widespread in native aspen stands in the southwestern U.S., further contributing to aspen mortality. Damage is severe in lower elevation stands and within ungulate exclosures created to conserve aspen. Young recruiting aspen that are rare on the landscape incur high levels of OSS-caused mortality when infested (Fig. 1). OSS has only recently become a pest of concern in the Southwest and Intermountain West, and thus, mitigation strategies are lacking for OSS in natural forest settings. OSS is also polyphagous and affects several woody hosts with thin bark, adding to management complexity. Collaborative efforts have been initiated to address OSS biology, natural predators, and management strategies

    Sustainability and Drivers of \u3ci\u3ePopulus tremuloides\u3c/i\u3e Regeneration and Recruitment Near the Southwestern Edge of its Range

    Get PDF
    Quaking aspen (Populus tremuloides Michx.) ecosystems are highly valued in the southwestern United States because of the ecological, economic, and aesthetic benefits they provide. Aspen has experienced extensive mortality in recent decades, and there is evidence that many areas in Arizona, United States lack adequate recruitment to replace dying overstory trees. Maintaining sustainable levels of regeneration and recruitment (i.e. juveniles) is critical for promoting aspen ecosystem resilience and adaptive capacity, but questions remain about which factors currently limit juvenile aspen and which strategies are appropriate for managing aspen in an increasingly uncertain future. To fill these critical knowledge gaps, we sampled aspen populations across Arizona and collected data representing a suite of biotic and abiotic factors that potentially influence juvenile aspen. Specifically, we addressed two questions: (i) Is aspen sustainably regenerating and recruiting in Arizona? and (2) Which biotic and abiotic factors significantly influence aspen regeneration and recruitment? We found that many aspen populations in Arizona lack sustainable levels of juvenile aspen, and the status of recruitment was especially dire, with 40% of study plots lacking a single recruiting stem. Aspen regeneration was less abundant on warmer sites than cooler ones, highlighting the threat that a rapidly warming climate poses to aspen sustainability. Aspen recruitment was significantly more abundant in areas with recent fire than in areas without fire, and recruitment had a strong positive relationship with fire severity. The most important limiting factors for aspen recruitment were ungulate browse, especially by introduced Rocky Mountain elk (Cervus canadensis nelsoni), and the invasive insect, oystershell scale (Lepidosaphes ulmi). We conclude with a discussion of how management can promote sustainability of aspen populations by addressing the array of threats that aspen faces, such as a warming climate, chronic ungulate browse, and outbreaks of oystershell scale

    The 2010 very high energy gamma-ray flare & 10 years of multi-wavelength observations of M 87

    Get PDF
    Abridged: The giant radio galaxy M 87 with its proximity, famous jet, and very massive black hole provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (~day), peak fluxes (Phi(>0.35 TeV) ~= (1-3) x 10^-11 ph cm^-2 s^-1), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken ~3 days after the peak of the VHE gamma-ray emission reveal an enhanced flux from the core. The long-term (2001-2010) multi-wavelength light curve of M 87, spanning from radio to VHE and including data from HST, LT, VLA and EVN, is used to further investigate the origin of the VHE gamma-ray emission. No unique, common MWL signature of the three VHE flares has been identified.Comment: 19 pages, 5 figures; Corresponding authors: M. Raue, L. Stawarz, D. Mazin, P. Colin, C. M. Hui, M. Beilicke; Fig. 1 lightcurve data available online: http://www.desy.de/~mraue/m87

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded

    Extent, impacts, and drivers of oystershell scale invasions in aspen ecosystems

    No full text
    Invasive herbivores that kill foundation tree species pose a major threat to forest ecosystem sustainability. One important foundation tree species in the interior western United States is quaking aspen (Populus tremuloides), which is threatened by recent outbreaks of an invasive insect, oystershell scale (Lepidosaphes ulmi; OSS). OSS outbreaks were first reported in 2016, when OSS began causing dieback and mortality of aspen in wildland forest settings in northern Arizona. Since then, OSS has been observed in other locations across Arizona and in other western states, and recent studies in Arizona have highlighted the threat that OSS poses to aspen sustainability, warranting a comprehensive survey of OSS invasions and their impacts on aspen ecosystems. We sampled aspen populations across Arizona and addressed three questions: (1) What is the geographic extent of OSS in Arizona? (2) What impacts does OSS have on aspen? (3) Which biotic and abiotic factors influence OSS abundance? We found that OSS was widespread in central Arizona and had a negative impact on aspen forest health. OSS was associated with crown damage and tree mortality, especially of intermediate-sized, recruiting stems. Climate was the most important driver of plot-level OSS abundance, with warmer, drier conditions resulting in significantly more OSS. OSS was also associated with less recent fire, presence of ungulate management strategies such as fenced exclosures, and stands with a greater density of aspen saplings. We conclude that active management is required to suppress OSS populations and mitigate damage to aspen ecosystems, and we provide OSS monitoring and management recommendations based on our findings

    Genetic architecture of disease resistance and tolerance in Douglas-fir trees.

    Get PDF
    Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes

    Oystershell Scale: An Emerging Invasive Threat to Aspen in the Southwestern US

    No full text
    Oystershell scale (OSS; Lepidosaphes ulmi) is an emerging invasive insect that poses a serious threat to conservation of quaking aspen (Populus tremuloides) in the southwestern US. Although OSS has been an urban pest in the US since the 1700s, it has recently spread into natural aspen stands in northern Arizona, where outbreaks are causing dieback and mortality. We quantified the ongoing outbreak of OSS at two scales: (1) local severity at two sites and (2) regional distribution across northern Arizona. Our regional survey indicated that OSS is widespread in lower elevation aspen stands and is particularly pervasive in ungulate exclosures. Advanced regeneration had the highest levels of infestation and mortality, which is concerning because this size class is an underrepresented component of aspen stands in northern Arizona. If OSS continues to spread and outbreaks result in dieback and mortality like we observed, then aspen in the southwestern US, and perhaps beyond, will be threatened. Three interacting factors contribute to OSS’s potential as a high-impact invasive insect that could spread rapidly: (1) its hypothesized role as a sleeper species, (2) potential interactions between OSS and climate change, and (3) the species’ polyphagous nature. Invasive pests like OSS pose an imminent threat to native tree species and, therefore, represent an immediate research and monitoring priority. We conclude with recommendations for future research and monitoring in order to understand OSS’s biology in natural aspen stands, quantify impacts, limit future spread, and mitigate mortality and loss of aspen and other host species
    corecore