21 research outputs found

    Hippocampal state-dependent behavioral reflex to an identical sensory input in rats.

    Get PDF
    We examined the local field potential of the hippocampus to monitor brain states during a conditional discrimination task, in order to elucidate the relationship between ongoing brain states and a conditioned motor reflex. Five 10-week-old Wistar/ST male rats underwent a serial feature positive conditional discrimination task in eyeblink conditioning using a preceding light stimulus as a conditional cue for reinforced trials. In this task, a 2-s light stimulus signaled that the following 350-ms tone (conditioned stimulus) was reinforced with a co-terminating 100-ms periorbital electrical shock. The interval between the end of conditional cue and the onset of the conditioned stimulus was 4±1 s. The conditioned stimulus was not reinforced when the light was not presented. Animals successfully utilized the light stimulus as a conditional cue to drive differential responses to the identical conditioned stimulus. We found that presentation of the conditional cue elicited hippocampal theta oscillations, which persisted during the interval of conditional cue and the conditioned stimulus. Moreover, expression of the conditioned response to the tone (conditioned stimulus) was correlated with the appearance of theta oscillations immediately before the conditioned stimulus. These data support hippocampal involvement in the network underlying a conditional discrimination task in eyeblink conditioning. They also suggest that the preceding hippocampal activity can determine information processing of the tone stimulus in the cerebellum and its associated circuits

    Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation

    Get PDF
    Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions

    Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder

    No full text
    Several studies have reported that adults with major depressive disorder have shorter telomere length and reduced hippocampal volumes. Moreover, studies of adult populations without major depressive disorder suggest a relationship between peripheral telomere length and hippocampal volume. However, the relationship of these findings in adolescents with major depressive disorder has yet to be explored. We examined whether adolescent major depressive disorder is associated with altered peripheral telomere length and hippocampal volume, and whether these measures relate to one another. In 54 unmedicated adolescents (13–18 years) with major depressive disorder and 63 well-matched healthy controls, telomere length was assessed from saliva using quantitative polymerase chain reaction methods, and bilateral hippocampal volumes were measured with magnetic resonance imaging. After adjusting for age and sex (and total brain volume in the hippocampal analysis), adolescents with major depressive disorder exhibited significantly shorter telomere length and significantly smaller right, but not left hippocampal volume. When corrected for age, sex, diagnostic group and total brain volume, telomere length was not significantly associated with left or right hippocampal volume, suggesting that these cellular and neural processes may be mechanistically distinct during adolescence. Our findings suggest that shortening of telomere length and reduction of hippocampal volume are already present in early-onset major depressive disorder and thus unlikely to be only a result of accumulated years of exposure to major depressive disorder
    corecore