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Abstract 11 

Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in 12 

addition to providing structure to cell membranes. Whole body cholesterol metabolism is 13 

maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, 14 

absorption, and excretion. The aim of this review is to discuss how ageing interacts with these 15 

processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss 16 

how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. 17 

Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the 18 

enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in 19 

the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is 20 

effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how 21 

diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on 22 

cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol 23 

metabolism can be used to identify therapeutic interventions.  24 
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1.0 Introduction  36 

An intriguing feature of ageing, is that it is often accompanied by the dysregulation of whole body 37 

cholesterol metabolism (Mc Auley and Mooney, 2014). A clinical manifestation of this process is an 38 

age-related rise in the plasma levels of low density lipoprotein cholesterol (LDL-C) (Abbott et al., 39 

1983). This rise in LDL-C has a significant impact on cardiovascular disease (CVD) risk, due to the 40 

association elevated plasma LDL-C has with the mechanisms which underpin atherosclerotic plaque 41 

formation (Gould et al., 2007). Conversely, prospective studies have shown that high density 42 

lipoprotein (HDL) levels diminish with age (Wilson et al., 1994). This is clinically significant, as HDLs 43 

are central to reverse cholesterol transport (RCT) (Groen et al., 2004). This process, which results in 44 

the trafficking of HDL-C, or the so-called ‘good cholesterol’ to the liver for subsequent removal via 45 

the intestine, represents the only way of eliminating excess cholesterol from peripheral tissue. There 46 

is a plethora of epidemiological evidence supporting an inverse relationship between HDL -C levels 47 

and CVD risk, and evidence has consistently shown that HDL-C levels are correlated with longevity in 48 

several population groups (Ferrara et al., 1997). It is therefore not surprising, that a healthy ageing 49 

phenotype has regularly been associated with the fine tuning of cholesterol metabolism, within 50 

certain cohorts of individuals who possess particular genetic variants in tandem with exceptional 51 

longevity (Milman et al., 2014). For example, a three-fold increase in the prevalence of homozygosity 52 

for the favourable I405V polymorphism, a mutation in the cholesteryl ester transfer protein (CETP), a 53 

key enzyme involved in RCT has been observed in those exhibiting exceptional longevity (Barzilai et 54 

al., 2003). Individuals with the I405V genotype have significantly larger HDL and LDL particle sizes, 55 

leading to the suggestion, that the risk of atherosclerosis development is diminished as a result of 56 

the diminished ability of the LDL particle to cross the arterial endothelium (Barzilai et al., 2003; 57 

Kulanuwat et al., 2015).  58 

 59 

Many key mechanisms involved in cholesterol metabolism are affected by ageing (Figure 1). For 60 

instance, ageing has been associated with a decline in the hepatic expression of cholesterol 7-alpha-61 

hydroxylase (CYP7AI), a key regulator of bile acid synthesis, thus resulting in a decreased cholesterol 62 

demand for conversion to bile acids (Bertolotti et al., 2007). Furthermore, there is a decline in 63 

hepatic LDL receptors (LDLr) with age, leading to a reduction in LDL-C clearance (Ericsson et al., 64 

1991; Millar et al., 1995). Within the small intestine, there is an increase in the number of the sterol 65 

transporter Niemann-pick C1-like 1 (NPC1L1), a key mediator of cholesterol absorption (Duan et al., 66 

2006). In addition, there is a decline in the predominant bacterial populations that play a role in the 67 

enterohepatic circulation of bile acids (Hopkins and Macfarlane, 2002). Moreover, dysregulation of 68 

cholesterol biosynthesis is associated with two key intracellular pathways which are thought to 69 

underpin intrinsic ageing and health-span. These pathways are defined by the 70 

mammalian/mechanistic target of rapamycin (mTOR) and by the NAD+-dependent deacetylase silent 71 

information regulator proteins (sirtuins). The former of these pathways has been suggested as a 72 

central regulator of intracellular cholesterol homeostasis (Wang et al., 2011), while mammalian 73 

sirtuin 6 (Sirt6), has been identified as a critical controller of sterol-regulatory element binding 74 

protein (SREBP)-2 in rodents (Tao et al., 2013). These recent findings suggest that it is not one 75 

mechanism that is the central driver of cholesterol dysregulation with age, but rather a number of 76 

mechanisms interacting with one another to disrupt cholesterol metabolism. Therefore, it is 77 

important to view cholesterol metabolism and its relationship with ageing in an integrated way. In 78 

this review we will 1) discuss in depth how ageing impacts cholesterol metabolism, 2) discuss a 79 
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number of the genes involved in cholesterol metabolism which have been implicated with longevity, 80 

3) discuss the role of oxidative stress in disrupting cholesterol metabolism, 4) describe the role of 81 

caloric restriction (CR) in modulating cholesterol metabolism, 5) describe recent evidence that 82 

demonstrates the role mTOR and sirtuins play in cholesterol biosynthesis, 6) provide an overview of 83 

diet and its impact on cholesterol metabolism, 7) discuss the interactions between cholesterol 84 

metabolism and the gut microbiome, 8) propose therapeutic strategies based around the gut 85 

microbiome which could help to prevent the dysregulation of cholesterol metabolism with age, and 86 

lastly we will provide an overview of mathematical models that have been used to gain an increased 87 

insight into the dynamics of cholesterol metabolism. 88 

 89 

2.0 Overview of Cholesterol Metabolism 90 

Cholesterol plays a vital role in the human body, as it is an essential component of all cell 91 

membranes. In addition, it is the precursor of steroid hormones, which control a range of 92 

physiological functions. Cholesterol is also the precursor to bile acids, which are necessary for the 93 

intestinal absorption of cholesterol, fats and lipophilic vitamins. Cholesterol can be obtained from 94 

the diet as well as being endogenously synthesised, the latter being the main source in humans 95 

(Gylling, 2004). A subtle balancing act between ingestion, absorption, synthesis and excretion 96 

maintains whole body cholesterol metabolism (Figure 1). Briefly, 1) the average daily intake of 97 

cholesterol is 304 and 213mg/day, for males and females respectively, living in the UK (Henderson et 98 

al., 2003). Of this, 85-90% is free cholesterol while 10-15% is in the esterified form (Iqbal and 99 

Hussain, 2009). Ingested cholesterol then enters the small intestine, where absorption occurs 100 

(Tancharoenrat et al., 2014). 2) Cholesterol in the free form is more readily incorporated into a bile 101 

acid micelle for absorption. Therefore, cholesterol ester hydrolase (CEH) converts the esterified 102 

cholesterol into free cholesterol, which can then be incorporated into a bile acid micelle (Ikeda et al., 103 

2002). This enables NPC1L1 to absorb the cholesterol by clathrin-mediated endocytosis (Betters and 104 

Yu, 2010). Upon entry to the enterocyte, acetyl CoA acetyltransferase 2 (ACAT2) converts the 105 

cholesterol into the esterified form in order to maintain the concentration gradient (Chang et al., 106 

2009). Microsomal triglyceride transfer protein (MTP) then shuttles the esterified cholesterol with 107 

apo B-48, while triacylglycerol and phospholipids are also incorporated to form a chylomicron (Jamil 108 

et al., 1995). 3) The chylomicron is then exported to the lymphatic system via exocytosis, and enters 109 

the blood stream, where it can deliver fatty acids to the tissues before being removed by hepatic 110 

remnant receptors and degraded in the liver (Cooper, 1997). 4) Cholesterol is also synthesised 111 

endogenously in all nucleated cells in the body, including the hepatocytes and enterocytes from 112 

acetyl CoA (Bloch, 1965). 5) From the hepatic cholesterol pool, very low density lipoprotein 113 

cholesterol (VLDL-C) is formed, to enable the transport of endogenously synthesised triacylglycerol 114 

to the tissues. Partial hydrolysis of VLDL-C by lipoprotein lipase (LPL) forms the LDL-C precursor, 115 

intermediate density lipoprotein cholesterol (IDL-C). IDL-C is further hydrolysed by hepatic lipase to 116 

form LDL-C (Havel, 1984). 6) Following this, VLDL-C, IDL-C and LDL-C are removed from the 117 

circulation by hepatic LDLr (Veniant et al., 1998). In addition, LDL-C can also be absorbed by receptor 118 

independent means (Spady et al., 1985). 7) Accumulation of LDL-C can develop into atherosclerosis 119 

the major clinical manifestation of CVD (Baigent et al., 2010). 8) Cholesterol can be removed from 120 

the tissues by HDL in RCT, via receptors including ATP-binding cassette subfamily A member 1 121 

(ABCA1), and scavenger receptor class B member 1 (SRB1), or independently. CETP then acts to 122 

facilitate the 1:1 exchange of cholesterol from HDL-C for triacylglycerol from VLDL-C and LDL-C 123 
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(Ohashi et al., 2005). 9) Cholesterol can be removed from the body by two mechanisms, as 124 

cholesterol can be removed directly via the ATP-binding cassette subfamily G5/G8 (ABCG5/G8) 125 

receptor and effluxed to the gall bladder (Repa et al., 2002) or alternatively, cholesterol can be 126 

converted to bile acids for faecal excretion. Bile acids are usually conjugated to glycine or taurine 127 

(3:1) before being effluxed to the gallbladder by receptors, including bile salt export pumps (BSEP) 128 

(Soroka and Boyer, 2014) for release into the small intestine postprandially in response to 129 

cholecystokinin (CKK) (Marciani et al., 2013). 10) On average, 500mg/day of both cholesterol and 130 

bile acids are excreted (Lu et al., 2010). Of the 5% of circulating bile acids that are excreted daily, 131 

98% are in the unconjugated form due to a lower reabsorption efficiency in the ileum (Batta et al., 132 

1999; Gérard, 2014). Conjugated bile acids are deconjugated by bacterial modification (Joyce et al., 133 

2014). Bacterial species such as Lactobacillus and Bifidobacterium produce bile acid hydrolase (BSH) 134 

in order to remove the associated amino acid (Oner et al., 2014). There are several survival-135 

promoting motives for bacteria to respond in this way; these include providing a nutrition source 136 

and bile acid detoxification (Begley et al., 2006). This modulation of bile acid circulation indicates 137 

that the gut microbiome also plays an important role in maintaining cholesterol metabolism. 138 

Collectively the mechanisms we have discussed coordinate together to maintain whole body 139 

cholesterol balance and age-related changes to such mechanisms have important implications for 140 

health.  141 

 142 

3.0 Impact of Ageing on Cholesterol Metabolism 143 

3.1 Lipoprotein Dynamics and Ageing 144 

It is well established that LDL-C levels rise with age (Abbott et al., 1983). Evidence from the 145 

Framingham Study demonstrates LDL-C steadily rises from 97.08 and 100.44mg/dL in 15-19 year 146 

olds, to 132.25 and 156.91mg/dL in 75-79 year olds in males and females, respectively (Abbott et al., 147 

1983). An increase in LDL-C is correlated with an increased risk of CVD; every 1mmol/L of LDL-C is 148 

associated with a 28% increased risk of coronary heart disease (CHD)-mortality (Gould et al., 2007). 149 

Paradoxically, this is not always the case, as higher levels of LDL-C was associated with a lower risk of 150 

all causes of mortality in a Chinese cohort of 935 ≥80 year old males and females. In this cohort each 151 

1mmol/L increase in LDL-C reflected a 19% decrease in mortality (Lv et al., 2015). Furthermore, 152 

abnormally high LDL-C (≥3.37mmol) resulted in a 40% reduction in mortality risk. Participants that 153 

survived the three year survey-based study were also found to have a higher prevalence (39.0% vs. 154 

27.7%) of central obesity (Lv et al., 2015). This phenomenon in the oldest old could be explained by 155 

several factors. Firstly, it is possible that individuals susceptible to the effects of increased LDL-C 156 

levels had already died before the age of 80 years, and are consequently not included in studies of 157 

the oldest old. It has also been suggested increased LDL-C enhances the immune response to 158 

pathogens (Biswas et al., 2015; Netea et al., 1996). 159 

A mechanistic explanation for the correlation between advancing age and increased LDL-C is that 160 

over time there is a reduction in its rate of clearance from the circulation. Under normal 161 

circumstances, apo B-100 containing lipoproteins, LDL-C and VLDL-C, are removed from the 162 

circulation by hepatic LDLr (Veniant et al., 1998). From the hepatic pool, cholesterol can be directly 163 

effluxed to the small intestine for excretion, or first be converted to bile acids. This process occurs in 164 

order to maintain the levels of circulating cholesterol, by counteracting the synthesis and ingestion 165 
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of cholesterol. Deficiency in LDLr results in severe hypercholesterolaemia (type II), as cholesterol 166 

cannot be removed from the plasma and into the liver for excretion (Hasan et al., 2014; Kowala et 167 

al., 2000). Murine models have shown LDLr deficiency increases the residence time of LDL-C and 168 

VLDL-C by decreasing the clearance rate (Ishibashi et al., 1993). For example, Ishibashi et al. (1993) 169 

demonstrated LDLr deficiency increased the half-life of 125I-LDL and 125I-VLDL by 2.5- and 30-fold 170 

respectively, while the half-life of 125I-HDL was unaffected. Furthermore, LDLr deficiency induced a 2-171 

fold increase in total cholesterol, a 7- and 9-fold increase in IDL-C, and LDL-C respectively, in addition 172 

to a modest 1.3-fold rise in HDL-C (Ishibashi et al., 1993). In humans the number of hepatic LDLr 173 

decrease with age, thus reducing the rate of LDL-C clearance, and augmenting LDL-C residence time 174 

(Millar et al., 1995). Furthermore, the rate of VLDL apo B-100 synthesis increases (Millar et al., 1995). 175 

This age-related decline in LDLr is possibly a contributing factor to LDL-C accumulation. It is likely 176 

there are several factors influencing the decline in LDLr with age, the primary factor being the 177 

decline in the rate of bile acid synthesis, as discussed in section 3.2. Briefly, a decline in bile acid 178 

synthesis, results in a decline in cholesterol utilisation from the hepatic pool. Thus, less cholesterol is 179 

required to maintain the hepatic pool, resulting in down regulation of LDLr and plasma cholesterol 180 

accumulation. More recently, proprotein convertase subtilisin kexin-9 (PSCK9) has also been 181 

associated with LDLr degradation. PCSK9, regulated by SREBP-2, acts by binding to the epidermal 182 

growth factor like repeat A domain of LDLr leading to receptor degradation. Levels of PCSK9 have 183 

been shown to rise with age, and may account for the age-related reduction in LDLr and LDL-C 184 

clearance (Cui et al., 2010; Dubuc et al., 2010). 185 

HDL-C levels are also affected by the ageing process (Wilson et al., 1994). Typically, HDL-C is 186 

observed to decrease by 1% per year (Ferrara et al., 1997). The age-related decline of the 187 

atheroprotective HDL-C is linked with the pathogenesis of CVD (Cooney et al., 2009). For instance, a 188 

favourable HDL-C profile is often observed in the offspring of centenarians (Barzilai et al., 2001). Due 189 

to the lack of controls, to compare the lipoprotein protein of long lived individuals with age-matched 190 

controls, offspring studies are utilised. By using this approach, inherited elevated HDL-C levels can be 191 

observed (Barzilai et al., 2001). Therefore, increased levels of HDL-C have been highlighted as a 192 

potential mechanism conferring exceptional longevity. This is substantiated by evidence detailing 193 

individuals with familial hyperalphalipoproteinaemia, whereby the production rate of apo A-I is 194 

markedly increased. These individuals display increased HDL-C levels, and exhibit reduced rates of 195 

CHD, which may play a role in promoting exceptional longevity (Rader et al., 1993). 196 

 197 

3.2 Cholesterol Absorption and the Synthesis and Enterohepatic Circulation of Bile Acids 198 

Cholesterol from both the diet and bile is absorbed in the small intestine (Repa et al., 2002; 199 

Tancharoenrat et al., 2014). Cholesterol absorption is regulated by two receptors on the apical 200 

membrane, NPC1L1 and ABCG5/G8. NPC1L1 is predominantly located in the jejunum, although this 201 

is found the length of the small intestine, and is responsible for the absorption of sterols from the 202 

intestinal lumen into the enterocytes (Masson et al., 2010; Sane et al., 2006). ABCG5/G8 is located 203 

primarily in the jejunum and ileum and to a lesser extent, the duodenum, and is responsible for the 204 

efflux of non-cholesterol sterols from the enterocyte into the intestinal lumen (Masson et al., 2010; 205 

Wang et al., 2007). Murine models have demonstrated that NPC1L1 expression significantly 206 

increases in the duodenum and jejunum with age, while ABCG5/G8 expression is suppressed. These 207 

age-related changes to receptor expression represented a 19-40% increase in cholesterol absorption 208 
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between young adult and aged adult mice. This effect was amplified in response to high levels of 209 

oestrogen (Duan et al., 2006). These findings are intriguing, as it has long been suggested that an 210 

increase in cholesterol absorption is an important factor in the rise in LDL-C which accompanies 211 

ageing (Hollander and Morgan, 1979). 212 

Bile acid synthesis declines with age in humans (Bertolotti et al., 2007; Einarsson et al., 1985). This is 213 

due to a reduction in the hepatic expression of the rate limiting enzyme for bile acid synthesis, 214 

CYP7AI (Bertolotti et al., 2007). This in turn reduces cholesterol utilisation, which is accompanied by 215 

a rise in plasma cholesterol (Uchida et al., 1996). Significantly, it has been estimated that with every 216 

10 years, there is a decrease of 60mg/day in cholesterol converted to bile acids (Bertolotti et al., 217 

1993). Thus, a decline in bile acid synthesis is another factor which could contribute to the 218 

dysregulation of whole body cholesterol metabolism with age.  219 

In rodents a mechanistic explanation for the decline in CYP7AI activity has been postulated. It is 220 

suggested the reduction in its activity is in part, due to neuroendocrine dysfunction which causes an 221 

age dependent decrease in growth hormone, which is known to act pleiotropically on lipoprotein 222 

metabolism (Parini et al., 1999). Synthesised bile acids are effluxed from the liver primarily by BSEP, 223 

and stored in the gall bladder, with BSEP expression remaining fairly consistent with age in mice (Fu 224 

et al., 2012). Following release into the small intestine postprandially, bile acids aid in the absorption 225 

of dietary lipids, and undergo bacterial modification before being reabsorbed or excreted. Therefore, 226 

any age related alterations to these processes will have consequences for whole body cholesterol 227 

metabolism.  228 

Digestive microflora play a vital role in the enterohepatic circulation of bile acids, by modifying bile 229 

acids and influencing feedback mechanisms. For example, conventionally grown mice have a 71% 230 

reduction in the size of their bile acid pool compared to germ free mice. Furthermore, these 231 

conventionally grown mice excrete over 4 times the amount of bile acids (Sayin et al., 2013). This 232 

emphasises the comprehensive role of the gut microbiota in regulating enterohepatic circulation. It 233 

is therefore logical changes to the gut microbiota with age will have an impact on overall cholesterol 234 

metabolism. Within the digestive tract, bile acids are metabolised by the digestive microbiota and 235 

converted to secondary bile acids. Deconjugation of primary bile acids by bacterial BSH is essential 236 

for this conversion to secondary bile acids. Deconjugated bile acids are more readily excreted than 237 

conjugated bile acids, as they are less readily reabsorbed by the apical sodium dependent bile acid 238 

transporter (ASBT) (Dawson, 2011). The excreted bile acids need to be replenished from the 239 

conversion of cholesterol (Joyce et al., 2014). With age, the rise in LDL-C can in part be explained by 240 

the decline in BSH+ species, such as Lactobacillus and Bifidobacterium species (Hopkins and 241 

Macfarlane, 2002). A decline in BSH results in fewer bile acids being deconjugated, and thus more 242 

are reabsorbed, and fewer are excreted. This results in a decline in the need for bile acid synthesis, 243 

and thus cholesterol utilisation is reduced (Joyce et al., 2014). One way to combat this decline in BSH 244 

is via the administration of probiotic strains (Al-Sheraji et al., 2012). However, caution is needed 245 

when suggesting this strategy as a therapeutic intervention for the treatment of 246 

hypercholesterolaemia, as increased concentrations of secondary bile acids can increase 247 

inflammation and cancer risk in the colon (Salemans et al., 1993). This is emphasized in older 248 

individuals, where intestinal transit time is elevated, and reabsorption of conjugated bile acids is 249 

decreased, thus increasing the exposure of the intestinal mucosa to bile acids (Salemans et al., 250 
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1993). This elevated exposure time results in the promotion of colorectal cancer in the elderly (Ajouz 251 

et al., 2014). 252 

 253 

 254 

4.0 Impact of Genetic Variation on Cholesterol Metabolism and Healthy Ageing 255 

There are several key genes involved in cholesterol metabolism; mutations to these genes can 256 

impact on plasma cholesterol levels; the response to pharmaceutical intervention; and the 257 

pathogenesis of age-related disease. In this section we will discuss several of the key genetic 258 

polymorphisms responsible for the dysfunction of cholesterol metabolism, as well as those 259 

promoting exceptional longevity. Asselbergs et al. (2012) describe 122 single nucleotide 260 

polymorphisms (SNPs) which could account for ~9.9% of the variance in HDL-C levels. Furthermore, 261 

104 SNPs could explain ~9.5% of the variance in LDL-C, 142 SNPs could explain 10.3% of variance in 262 

total cholesterol, while 110 SNPs could explain 8.0% of the variance associated with triglyceride 263 

levels (Asselbergs et al., 2012). In addition, genetic factors can also influence the lipoprotein 264 

response to extrinsic factors, such as pharmaceutical intervention or diet. For example, in response 265 

to increases in dietary cholesterol, individuals can be categorised as either a hypo-responder, where 266 

plasma total cholesterol increases <0.05mmol/L, or as hyper-responders, where there is an increase 267 

of ≥0.06mmol/L per each additional 100mg dietary cholesterol, respectively (Herron et al., 2003). 268 

Likewise, Herron et al. (2003) demonstrated ingestion of ~640mg/day resulted in a 30% increase in 269 

LDL-C and an 8% increase in HDL-C in individuals classified as hyper-responders, whereas LDL-C and 270 

HDL-C were unaffected in individuals classed as hypo-responders. Thus, it is not surprising that 271 

previously Bosner et al. (1999) demonstrated cholesterol absorption varies from 29.0 to 80.1% in 272 

healthy subjects aged between 17 and 80 years of age. Ethnicity also plays a role in this variation, 273 

with African-Americans on average absorbing larger amounts of cholesterol than Caucasians or 274 

those from Asian descent (63.4% vs. 56.2%). Although, dietary intake, rather than absorption 275 

efficiency, appeared to be the dominant factor in cholesterol absorption (Bosner et al., 1999). In 276 

addition, the response to pharmaceutical intervention, such as the administration of cholesterol 277 

biosynthesis inhibitors or cholesterol absorption inhibitors is highly variable (Barber et al., 2010; 278 

Simon et al., 2005). For example, the presence of at least 1 minor allele at g.-18C resulted in a 15% 279 

improved reduction in LDL-C in response to ezetimibe + statin therapy (Simon et al., 2005).  280 

4.1 Cholesteryl Ester Transfer Protein 281 

Mutations to the gene encoding for the CETP enzyme can influence CETP activity and size (Cefalu et 282 

al., 2009). This affects both the amount of esterified cholesterol transported from HDL to LDL and 283 

VLDL, as well as lipoprotein size and number (Wang et al., 2002). There are several mutations within 284 

the CETP gene that have been discovered. Of these polymorphisms, several have been associated 285 

with lower CETP levels, reduced risk of CVD, and increased longevity. Murine models transfected 286 

with CETP undergo extensive lipid profile remodelling resulting in an increased risk for CVD 287 

(Westerterp et al., 2006). Therefore, any mutation resulting in decreased CETP, is thought to reduce 288 

CVD risk and increase life-span. For example, homozygosity for the common I405V polymorphism is 289 

associated exceptional longevity (Barzilai et al., 2003). In one case, a three-fold increase in 290 

homozygosity for the I405V genotype was observed in long lived individuals (24.8% vs. 8.6%). This 291 

homozygous amino acid substitution of 405 isoleucine for valine reflected a 17% reduction in CETP 292 
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levels, elevated HDL concentrations by 3.63%, and decreased LDL levels by 7.31%, in comparison to 293 

individuals homozygous for the isoleucine codon. Furthermore, LDL and HDL particles were 294 

significantly larger (Barzilai et al., 2003). These larger lipoproteins have been associated with a 295 

decreased incidence of CVD, hypertension, metabolic syndrome and neurodegeneration (Barzilai et 296 

al., 2006; Barzilai et al., 2003). It is likely that larger LDL molecules are less readily able to penetrate 297 

the arterial tissue, and therefore result in a decreased risk for atherosclerosis pathogenesis (Barzilai 298 

et al., 2003). Homozygosity for the I405V polymorphism is therefore regarded as a protective 299 

phenotype for healthy ageing (Atzmon et al., 2005; Barzilai et al., 2006).  300 

 301 

 302 

The D442G mutation has also been described as an atheroprotective genotype, as the D442G 303 

mutation has been shown to increase LDL-C particle size, and HDL-C levels (Wang et al., 2002), in 304 

addition to decreasing the risk for CVD mortality (Koropatnick et al., 2008). However, Zhong et al. 305 

(1996) demonstrated an increase in HDL-C associated with this genotype, was correlated with an 306 

increase in CHD risk (Zhong et al., 1996). Alternatively, Hirano et al. (1997) demonstrated that a G to 307 

A mutation in intron 14, which induced a rise in HDL-C exhibited a U-shaped curve of the incidence 308 

risk of ischemic change (Hirano et al., 1997). Moreover, Agerholm-Laren et al. (2000) demonstrated 309 

the A373P/R451Q genotype resulted in a decrease in HDL-C in both males and females from the 310 

Danish general population. Homozygosity for the mutation resulted in the effect being more 311 

pronounced than in heterozygotes, with HDL-C levels of 1.19 and 1.38mmol/L in males and females 312 

respectively compared to 1.26 and 1.62mmol/L. Non-carrier males and females had HDL levels of 1.4 313 

and 1.74mmol/L, respectively. Although this CETP genotype induced reduced HDL-C levels, they 314 

were not associated with ischemic heart disease (IHD). Furthermore, when the authors adjusted for 315 

a group of risk factors in addition to HDL-C, the mutation resulted in a 36% reduction in risk of IHD 316 

(Agerholm-Larsen et al., 2000). 317 

 318 

4.2 Niemann-Pick C1-Like 1  319 

Intestinal absorption of cholesterol varies significantly from person to person. In healthy individuals, 320 

cholesterol absorption can range from 29.0-80.1% (Bosner et al., 1999). This is due, in part to the 321 

genetic variation in the genes encoding for the NPC1L1 receptor, which is responsible for the 322 

clathrin-mediated endocytosis of cholesterol from the digestive tract. Cohen et al. (2006) discovered 323 

20 polymorphisms within individuals classified as hypo-absorbers, compared to only 5 for the hyper-324 

absorber category. Of the 20 mutations conferring a low cholesterol absorption efficiency, 18 were 325 

observed in African-Americans. This reflected the findings that these hypo-absorber phenotypes 326 

were more prevalent in African Americans (6.2%) than white (1.8%) or Hispanic (1.7%) populations. 327 

These hypo-absorber phenotypes conferred an average 8.6% reduction in LDL-C (Cohen et al., 2006).  328 

In individuals with autosomal dominant hypercholesterolaemia, lacking LDLr or apo B mutations, 329 

NPC1L1 mutations may play a role in the hypercholesterolaemic phenotype displayed. For example, 330 

it has been shown that the -133A>G polymorphism, significantly increases NPC1L1 promoter activity 331 

(Martín et al., 2010). More recently, NPC1L1 SNPs have been linked with CVD. For instance, Polisecki 332 

et al. (2010) demonstrated that homozygous carriers for the minor alleles at -18A>C, L272L, V1296V 333 
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or U3_28650A>G exhibited a 2-8% increase in LDL-C, while the risk of developing a fatal or nonfatal 334 

CHD event escalated by 50-67% (Polisecki et al., 2010). Muendlein et al. (2015) determined that 24 335 

variants, particularly rs55837134 were associated with future cardiovascular events. Homozygosity 336 

for the rare rs55837134 variant was associated with a 3-fold increase in cardiovascular event 337 

incidence, compared with carriers homozygous for the common allele (Muendlein et al., 2015). In 338 

contrast, Stitziel et al. (2014) demonstrated that the presence of 1 of 15 NPC1L1 inactivating 339 

mutations, as observed in 1/650 individuals, corresponded to a 12mg/dL decline in LDL-C, and a 53% 340 

reduction in cardiovascular event risk (Stitziel et al., 2014). In addition to affecting baseline 341 

lipoprotein characteristics, mutations to the NPC1L1 gene also influence the lipoprotein profile 342 

response to therapeutic intervention. For example, Simon et al. (2005) demonstrated that 343 

individuals homozygous for the common allele g.-18C>A exhibited a 24.2% decline in LDL-C from 344 

baseline levels with ezetimibe treatment, compared with 27.8% for individuals heterozygous for the 345 

minor allele. Thus, heterozygosity for the minor allele represented a 15% increased response to 346 

ezetimibe treatment (Simon et al., 2005). In addition to NPC1L1 mutations leading to an altered 347 

response to the NPC1L1 inhibitor ezetimibe, statin treatment efficiency is also affected. Polisecki et 348 

al. (2010) demonstrated the -133A>G SNP influenced the LDL-C response to Pravastatin treatment. 349 

Males homozygous for the minor -133A>G allele had the greatest decline in LDL-C with pravastatin 350 

treatment, while females with the major -133A>G allele exhibited the greatest response to 351 

treatment (Polisecki et al., 2010). 352 

 353 

4.3 Apolipoprotein E 354 

Apo E is present on chylomicrons, VLDL, IDL, and HDL and acts as a ligand for hepatic LDLr and LRP to 355 

enable lipoprotein uptake. There are three major alleles associated with the APOE gene. These are, 356 

ɛ2, ɛ3, and ɛ4, which have a population frequency of 6.9, 76.2 and 16.9%, respectively in a Belgian 357 

cohort (Engelborghs et al., 2003). The ɛ3 allele is most commonly observed, and is considered as the 358 

‘neutral’ apo E genotype. Along with ɛ2, ɛ3 preferentially binds to HDL-C, while the ɛ4 allele has a 359 

preference for VLDL-C (Dong and Weisgraber, 1996). The presence of the ɛ4 allele confers a 15 and 360 

25% decline in plasma apo E in males and females, respectively, compared to those with the ɛ3 361 

allele. This decline in apo E is associated with a 2 and 5% increase in LDL-C in males and females, 362 

respectively. In comparison, those with the ɛ2 allele exhibit a 27 and 32% increase in apo E, which is 363 

associated with a 10% decrease in LDL-C levels (Larson et al., 2000). The presence of an ɛ4 allele is 364 

considered a risk factor for the development of many conditions including atherosclerosis (Zende et 365 

al., 2013), Alzheimer’s Disease (Rhinn et al., 2013), and multiple sclerosis (Horakova et al., 2010), in 366 

addition to accelerating telomere shortening (Wikgren et al., 2012). On the other hand, this allele 367 

has been associated with a higher vitamin D status (Huebbe et al., 2011), and has been identified as 368 

a possible protective genotype against macular degeneration (Kovacs et al., 2007). The ɛ2 allele in 369 

contrast has been associated with an increased risk for the disease, or for its earlier onset (Tikellis et 370 

al., 2007). Furthermore, homozygosity for the ɛ2 allele is found in 90% of individuals with 371 

hyperlipoproteinaemia type III (Mahley and Rall, 2000). The ɛ2 isotope results in defective 372 

lipoprotein binding to LDLr, which in turn leads to incomplete catabolism of chylomicrons and VLDL-373 

C, resulting in an accumulation of cholesterol rich lipoprotein remnants (Phillips, 2014). However, 374 

only 5% of ɛ2 homozygotes have this disease, and therefore there are other factors involved in the 375 

development of the disease (de Beer et al., 2002). With the exception of hyperlipoproteinaemia type 376 
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III, this ɛ2 allele has been associated with a protective phenotype against CHD (Bennet et al., 2007). 377 

Furthermore, the ɛ2 allele is positively associated with exceptional longevity in Italian, Danish, US, 378 

and Japanese cohorts. In contrast, the presence of the ɛ4 allele reduced the chance of reaching 379 

exceptional longevity in Spanish, Italian, Danish, US and Japanese cohorts (Garatachea et al., 2014; 380 

Schupf et al., 2013).  381 

 382 

4.4 Lipoprotein and Hepatic Lipase  383 

Another enzyme that is effected by genetic mutation is LPL. LPL is primarily found on the endothelial 384 

wall of capillaries and is responsible for the hydrolysis of triacylglycerol in chylomicrons and VLDL 385 

into FFA and MAG (Goldberg et al., 2009). A common polymorphism in the LPL gene is S447X. In a 386 

cohort of middle-aged and elderly American subjects, 44.0 and 50.6% of males and females, 387 

respectively exhibited homozygosity for the common allele, while only 12.6 and 7.6% were 388 

homozygous for the rare allele (Larson et al., 1999). Heterozygosity was displayed in 43.4 and 41.8% 389 

of males and females respectively. Females, but not males, exhibiting homozygosity for the rare 390 

allele had lower total cholesterol and LDL-C levels, when compared to heterozygotes and 391 

homozygotes for the common allele (Larson et al., 1999). This alteration to cholesterol metabolism 392 

could play a role in the association of this genotype with age-related conditions such as 393 

hypertension, type 2 diabetes mellitus and coronary artery disease (Daoud et al., 2013; Muñoz-394 

Barrios et al., 2012).  Hepatic lipase is responsible for the conversion of IDL to LDL, and can also be 395 

effected by genetic mutation. In contrast, the –C480T polymorphism in the hepatic lipase gene have 396 

been shown to elevate HDL-C levels. Homozygosity for the common allele was observed in 53.2% of 397 

control individuals, while 40.3% of these individuals were observed to be heterozygous. 398 

Homozygosity for the –C480T polymorphism was observed in 6.5% of healthy individuals, whereas, 399 

this was reduced to 4.7% for individuals with a paternal history of myocardial infarction before the 400 

age of 55 years, although this was not statistically significant (Murtomäki et al., 1997). Furthermore, 401 

McCaskie et al. (2006) found that although HDL-C levels were raised in an Australian population with 402 

this polymorphism, it was not associated with a decrease in CHD risk (McCaskie et al., 2006). In 403 

contrast, Fan et al. (2006) found that this polymorphism was associated with a lower coronary flow 404 

reserve, which is an early indicator of atherosclerosis (Fan et al., 2006).  405 

 406 

4.5 HMG CoA Reductase  407 

HMG CoA reductase is the enzyme responsible for the rate limiting step in cholesterol biosynthesis, 408 

and is therefore the main target for pharmaceutical intervention by statins (Istvan and Deisenhofer, 409 

2001). Chasman et al. (2004) demonstrated that two genetic polymorphisms were not only able to 410 

influence the baseline characteristics of the lipoprotein profile, but also influence the efficacy of 411 

statin treatment. The presence of one copy of SNP 12 (rs17244841) induced an 18.9% reduction in 412 

LDL-C and 4.6% increase in HDL-C, compared with individuals homozygous for the major allele. 413 

Whereas, heterozygotes for SNP 29 (rs17238540), exhibited 18.9 and 2.4% reduction in LDL-C and 414 

HDL-C, respectively. The presence of one of the SNPs also resulted in the diminished efficacy for 415 

cholesterol lowering treatment by pravastatin. For individuals with either SNP, the total cholesterol 416 

and LDL-C lowering efficacy was reduced 22 and 19% respectively (Chasman et al., 2004). Thus, 417 

genetic polymorphisms in certain enzymes and receptor genes associated with cholesterol 418 
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biosynthesis can provoke the dysregulation of cholesterol metabolism, lipoprotein profile, alter CVD 419 

risk, and the response of cholesterol metabolism to pharmaceutical intervention.  420 

 421 

5.0 Oxidative Stress and Cholesterol Metabolism  422 

The free radical theory of ageing is underpinned by the belief, that the gradual accumulation of 423 

oxidative stress with time is responsible for the ageing process (Harman, 1956, 2009). Reactive 424 

oxygen species (ROS) play a key role in the development of oxidative stress (Kandola et al., 2015). 425 

ROS are produced during mitochondrial oxidative phosphorylation, and by cells exposed to 426 

xenobiotics (Berthiaume and Wallace, 2007), pathogen associated patterns (PAMPs) (Tassi et al., 427 

2009) or pro-inflammatory cytokines (Yang et al., 2007). Despite the processed role ROS may play in 428 

the ageing process, ROS also have useful roles in processes such as phagocyte derived bactericidal 429 

and tumouricidal activity (Li et al., 2013; Vatansever et al., 2013), nitric oxide (NO) production (Shen 430 

et al., 2014), and in insulin signalling (Bashan et al., 2009). Atherosclerosis is suggested to be a 431 

condition mediated by ROS, LDL-C and intrinsic ageing (Vogiatzi et al., 2009). Briefly, LDL-C migrate 432 

across damaged artery endothelium into the tunica intima, where an accumulation of LDL-C, 433 

immune cells, and proliferative smooth muscle cells occlude the artery lumen restricting blood flow 434 

(Hansson and Hermansson, 2011). This endothelial damage and dysfunction can be influenced by a 435 

variety of factors including smoking (Ambrose and Barua, 2004), hypertension (Li and Chen, 2005), 436 

hyperglycaemia (Popov, 2010), hyperlipidaemia (Kerenyi et al., 2006), ageing (Wang and Bennett, 437 

2012), infection (Rosenfeld and Campbell, 2011), and hyperhomocysteinaemia (Guthikonda and 438 

Haynes, 2006). This damage results in increased ROS production, and a more permeable membrane 439 

in which LDL-C and immune cells can more freely migrate. Oxidation of LDL by ROS forms the 440 

cytotoxic and immunogenic oxLDL (Mahmoudi et al., 2011). Release of monocyte chemotactic 441 

protein-1 (MCP-1) by endothelial smooth muscle cells and macrophage that have already localised in 442 

the tunica intima, leads to the migration of monocytes across the endothelium where they 443 

differentiate into macrophage (Dewald et al., 2005). These macrophage then engulf oxLDL via 444 

scavenger receptors SR-A and CD36, forming lipid-laden foam cells (Korporaal et al., 2007). 445 

Meanwhile, T cells, mainly Th1, migrate across the endothelium and release pro-inflammatory 446 

cytokines such as IL-2, IL-12 and IFN-γ to intensify the immune response (Baidya and Zeng, 2005). 447 

Foam cells, macrophage, and T-cells then combine to form a fatty streak. The macrophage also 448 

secrete the pro-inflammatory cytokines TNFα, IL-1β, IL-6, and IL-12, in addition to the mitogen 449 

platelet derived growth factor (PDGF), which induces the proliferation of smooth muscle cells of the 450 

tunica media forming a cap for the plaque (Ross et al., 1990). This segregates the plaque from the 451 

blood, however the plaque cause the artery to harden and narrow, restricting blood flow. 452 

Subsequent instability in the plaque can result in it rupturing; which can block the supply of blood to 453 

the heart causing a myocardial infarction, or to the brain, triggering an ischaemic stroke (Bentzon et 454 

al., 2014). In addition to the effects of ROS on LDL, it has also been shown to interact with the 455 

atheroprotective particle HDL, it has been suggested HDL is oxidised during the pathogenesis of 456 

atherosclerosis, causing HDL to lose its protective properties and transform into a proinflammatory 457 

and proatherogenic mediator. These oxidised HDL, oxHDL, have been shown to promote smooth 458 

muscle cell proliferation and migration in a dose dependent manner, thus aiding in the progression 459 

of atherosclerosis pathogenesis (Wang et al., 2014). Further to this, oxHDL, have also been shown to 460 

induce ROS production, upregulate the expression of the proinflammatory cytokine TNF-α, and 461 
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upregulate the expression of prothrombotic cyclooxygenase-2 (COX-2) and plasminogen activator 462 

inhibitor-1 (PAI-1) (Callegari et al., 2006; Norata et al., 2004; Soumyarani and Jayakumari, 2012).  463 

 464 

6.0 Caloric Restriction 465 

CR, a dietary regime defined by a 20-40% reduction of calories, which does not induce malnutrition 466 

(Taormina and Mirisola, 2014), has been demonstrated to extend life-span in a diverse range of 467 

organisms, however its effect on humans has not be fully established (Barzilai et al., 2012; Guarente, 468 

2013). CR has been associated with many metabolic effects linked to ageing and longevity. For 469 

example, CR has been associated with a reduction in the release of ROS from complex I of 470 

mitochondria within the cardiac tissue of rodents (Gredilla et al., 2001). Therefore, there is a 471 

prevailing hypothesis within gerontology, that the positive effects of this dietary regime are 472 

mediated through a reduction in ROS. However, it is possible that the beneficial effects of CR on 473 

health-span extend beyond this particular aspect of ageing, as evidence suggests, that metabolic 474 

rate is unaffected by CR in murine models (Hempenstall et al., 2010).Moreover, it is considered that 475 

ageing is associated with the accumulation of ROS and oxidative damage. Conversely, recent 476 

evidence has suggested that low grade oxidative damage may be beneficial. As an example, glucose 477 

restriction has been associated with an increase in oxidative stress in Caenorhabditis elegans, which 478 

is thought to increase resistance to further oxidative stress, and thus extend life-span via 479 

mitochondrial hormesis (Schulz et al., 2007). Alternatively, murine models have demonstrated that 480 

calorie restriction can prevent the age-related decline of heat shock proteins (HSPs), which are 481 

induced following exposure to stress to protect cells and organs from the stressor (Colotti et al., 482 

2005). CR has also been shown to have a positive effect on cholesterol metabolism in mammals. For 483 

instance, Edwards et al. (1988) investigated the effect of CR on LDL-C over a five year period in 484 

Rhesus monkeys and found this regime reduced LDL-C levels when compared to a control group 485 

(Edwards et al., 1998). Much more recently, it has also been suggested CR improves metabolic 486 

health generally (Ristow and Zarse, 2010). For instance, Colman et al. (2014) demonstrated a 2.9 487 

times increased risk for all age-related causes of death, in Rhesus monkeys undertaking a control 488 

diet, when compared to those undertaking a 30% CR diet. CR also increased the survival rate of 489 

those animals by 3.63 times (Colman et al., 2014). The Comprehensive Assessment of Long-Term 490 

Effects of Reducing Calorie Intake (CALERIE) study provides information on the effect of CR in 491 

humans. Phase one of this program examined healthy, but overweight individuals (BMI 25-492 

29.9kg/m2) from three centres across America who underwent 20-25% CR. From these studies it was 493 

determined two biomarkers of longevity, fasting insulin and body temperature were reduced 494 

following 6 months of 25% CR. The authors of this study postulated that CR increases longevity via a 495 

reduction in metabolic rate (Heilbronn et al., 2006). In terms of a direct impact on lipid metabolism, 496 

CR was shown to decrease weight, fat mass and visceral adipose tissue in participants. These 497 

changes were associated with an increase in insulin sensitivity (Larson-Meyer et al., 2006). The 498 

project has recently progressed to phase 2 trials, to examine the effects of CR on healthy nonobese 499 

(BMI 22-28kg/m2) individuals (Stewart et al., 2013).  500 

The effects of CR in humans has also been investigated by Fontana et al. (2004). In this study, the 501 

lipoprotein profile and carotid artery intima-media thickness of 18 members of the Caloric 502 

Restriction Society, whose members practice long term self-imposed CR (3-15 years), was compared 503 

with 18 control individuals. This investigation revealed a number of interesting findings about the 504 
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interaction of CR with lipid metabolism, including a decline in total cholesterol, LDL-C, and 505 

triacylglycerol by 19.1, 29.5 and 63.8%, respectively following CR. HDL-C was also affected by CR, 506 

with a 51.2% elevation in levels. This was in addition to a reduction in other risk factors associated 507 

with CVD including, blood pressure and the inflammatory marker C-reactive protein (CRP).Together 508 

with the carotid intima-media thickness reduction of approximately 40%, CR appears to have an 509 

atheroprotective effect (Fontana et al., 2004). We can conclude from these studies, although it is 510 

clear that CR increases life-span in many species, the underlying mechanisms are still ambiguous. 511 

However, in mammals a favourable lipid profile could be one component of a much broader 512 

cardioprotective protective effect brought on by CR which ultimately contributes to life span 513 

extension. 514 

 515 

7.0 Sirtuins, mTOR and Cholesterol Biosynthesis 516 

Mechanistic target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine protein 517 

kinase of the phosphatidylinositol-3-OH kinase (PI(3)K)-related family that regulates an array of 518 

anabolic and catabolic pathways at the mRNA expression level (Johnson et al., 2013). mTOR acts as a 519 

key metabolic sensor in a wide range of biological activities, both at a cellular and organism level. 520 

This ability to act as a regulator causes it to respond to a plethora of both intrinsic and extrinsic 521 

cellular signals (Mc Auley et al., 2015). These metabolic cues include changes to oxygen, nutrient and 522 

hormonal levels. mTOR forms the catalytic subunit of two discrete signalling complexes, known as 523 

mTOR complexes 1 and 2 (mTORC1 and mTORC2). The mTOR pathway impacts cell growth and 524 

proliferation by provoking anabolic processes, including biosynthesis of proteins, lipids and 525 

organelles, and by restricting catabolic processes, such as autophagy. There is a large body of 526 

evidence which has been generated from several animal models that link the activities of mTORC1 to 527 

the beneficial effects of CR, and thus longevity. Discussing these studies is beyond the scope of this 528 

review, rather we will focus on how mTOR impacts cholesterol biosynthesis. Central to the 529 

regulation of cholesterol biosynthetic gene expression is the SREBP family of transcription factors 530 

(Horton et al., 2002). It has been observed that silencing of SREBP inhibits Akt (Protein kinase B 531 

(PKB)) dependent lipogenesis. Akt is an upstream regulator of mTOR, and it has been suggested 532 

PI3K/Akt/TOR pathway regulates protein and lipid biosynthesis in an orchestrated manner 533 

(Porstmann et al., 2008). More recently, Peterson et al. (2011) demonstrated TORC1 regulates SREBP 534 

by controlling the nuclear entry of lipin 1, a phosphatidic acid phosphatase. It was found that 535 

inhibition of hepatic mTORC1 impaired SREBP function and resulted in mice becoming tolerant in a 536 

lipin 1-dependent fashion, to hepatic steatosis and hypercholesterolemia induced by a high-fat and 537 

cholesterol diet (Peterson et al., 2011). Moreover, a recent study that examined non-alcoholic fatty 538 

liver disease under conditions of inflammation in apolipoprotein E knockout mice, demonstrated the 539 

inhibition of mTORC1 activity blocked the translocation of SCAP/SREBP-2 complex from the 540 

endoplasmic reticulum to the Golgi, and decreased the expression of LDLr and SREBP-2. These 541 

effects were accompanied by an increase in LDLr degradation (Liu et al., 2015). Thus, this study 542 

suggests that there could be an important link between mTOR and LDLr turnover, which has 543 

significant implications for whole body cholesterol balance and healthy ageing.  544 

Sirtuins have also been shown to impact cholesterol biosynthesis. There are 7 known mammalian 545 

sirtuins, that function as NAD+-dependent deacetylases, which are involved in a wide range of 546 

cellular activities including nutrient sensing and DNA repair (Chang et al., 2009; de Magalhães et al., 547 

2012). The most well studied of the sirtuins, SIRT1, plays a role in various metabolic processes that 548 

enable the cell to adapt to changes in nutrient levels. For instance, SIRT1 plays a part in modulating 549 
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hepatic gluconeogenesis, insulin secretion, fat mobilisation, and stress responses (Satoh et al., 2011; 550 

Wei et al., 2011). SIRT1 also deacetylates the nuclear receptor liver X receptor α (LXRα) to induce 551 

synthesis of the transporter ABCA1, a mediator of HDL and RCT. SIRT1 KO mice display reduced 552 

plasma HDL-C levels in addition to an accumulation of cholesterol in the liver (Li et al., 2007). SIRT1 553 

has also been suggested to be cardioprotective. For instance, evidence indicates it has a role in 554 

preventing cardiac hypertrophy (Planavila et al., 2011). In contrast, it has been demonstrated that 555 

inhibition of SIRT2 can reduce sterol biosynthesis by decreased trafficking of SREBP-2, as a 556 

mechanism of neuroprotection in cellular and invertebrate models of Huntingtons Disease (Luthi-557 

Carter et al., 2010). Moreover, Tao et al. (2013) have suggested that Sirt6 is a critical factor for 558 

Srebp2 gene regulation. Hepatic deficiency of Sirt6 in mice resulted in elevated serum and hepatic 559 

cholesterol levels. Sirt6 is recruited by forkhead box O (FoxO)3 to Srebp2, where Sirt6 deacetylates 560 

histone H3 at lysines 9 and 56, thus promoting a repressive chromatin state. It was found that Sirt6 561 

or FoxO3 overexpression improved hypercholesterolemia in diet-induced or genetically obese mice 562 

(Tao et al., 2013). Therefore, Sirt6 and FoxO3 could have a crucial role to play in the regulation of 563 

cholesterol homeostasis  564 

 565 

8.0 Can Diet Mitigate the Effect Ageing has on Cholesterol Metabolism? 566 

During the 1950s, the Seven Countries Study (SCS) began exploring the role of diet and lifestyle on 567 

disease rates in populations from various countries. Amongst the findings reported from these 568 

studies were the causal association between, serum cholesterol, blood pressure and smoking and 569 

CHD mortality rates (Menotti et al., 1998; Menotti et al., 2004a; Menotti et al., 2004b), whereas, 570 

diets high in saturated fat, and trans fats were associated with higher serum cholesterol and thus 571 

CHD risk (Kromhout et al., 1995). Conversely, diets high in vegetables, rich in fibre and antioxidants, 572 

promoted significant reductions in CHD risk (Buijsse et al., 2008; Streppel et al., 2008). Dietary 573 

regime is therefore an important factor that should be analysed and adjusted in order to reduce CHD 574 

risk and promote longevity. The important role of dietary and other lifestyle interventions on life-575 

span can be emphasised by analysing the North Karelia Project. Internationally, Finnish males, 576 

especially those in the province of North Karelia, had the highest rate of CHD in the late 1960s, as a 577 

result of a diet high in salt and saturated fat, and low in vegetables, in addition to high rates of 578 

smoking and physical inactivity (Puska, 2008). In order to combat this burden, a low-resource, 579 

community-based intervention study titled the North Karelia Project was implemented in 1972 580 

(Puska, 1973). The North Karelia Project aimed to reduce CHD morbidity and mortality rates by 581 

reducing LDL-C concentrations and blood pressure by improving diet and exercise patterns; and 582 

reducing smoking rates. The project resulted in the most rapid decline in CHD mortality in the world. 583 

Within 5 years, a 4.1 and 1.2% reduction in serum cholesterol was exhibited in men and women, 584 

respectively (Puska et al., 1979). These figures increased further to a 21% and 23% decline in total 585 

cholesterol under re-examination in 2007 (Vartiainen et al., 2010). The initial five year study resulted 586 

in a 17.4 and 11.5% reduction in CHD risk in males and females, respectively. Following a further 25 587 

years of implementation, this decline was amplified to a 60% reduction (Puska et al., 1979; 588 

Vartiainen et al., 2010). This 30 year project reflected an 85% decrease in CHD-related mortality 589 

(Puska, 2008). The impact of lifestyle on cholesterol metabolism, and consequently CVD risk is 590 

therefore significant. The role diet and lifestyle plays in reducing risk of age related diseases and in 591 

extending life-span is also apparent in those who consume a Mediterranean diet. This dietary 592 
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pattern has been studied extensively, particularly, the role it plays in optimising lipoprotein profile 593 

and reducing CVD risk 594 

 595 

8.1 Mediterranean Diet 596 

The Mediterranean diet is characterised by a high intake of vegetables, fruits, legumes, nuts, cereals 597 

and olive oil, and a low intake of dairy, and red and processed meats (Trichopoulou and Lagiou, 598 

1997). Richard et al. (2012) demonstrated a five week Mediterranean diet decreased LDL-C by 9.9%, 599 

even in the absence of weight loss in men with metabolic syndrome. It was suggested this dietary 600 

pattern was able to effect LDL-C levels, by increasing LDL-C clearance as well as reducing cholesterol 601 

absorption. This was thought to be due to an increase of dietary phytosterols, nutrients, 602 

monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), fish oils and fibre (Richard 603 

et al., 2012; Woodside et al., 2015). The Mediterranean diet affects cholesterol metabolism as 604 

follows. Firstly, it is postulated PUFA increases LDLr expression (Fernandez and West, 2005). 605 

Furthermore, studies have indicated plant sterols can reduce cholesterol absorption by 30-50% (Law, 606 

2000), although the expression of ABCG5/G8 and NPC1L1 are thought to be unaffected by sterol 607 

ingestion (Field et al., 2004). Consumption of a Mediterranean diet has not only been associated 608 

with a reduction in the incident rate of the age related diseases, type II diabetes mellitus, CVD, and 609 

cancer, by 52, 30, and 12%, respectively (Benetou et al., 2008; Estruch et al., 2013; Salas-Salvadó et 610 

al., 2011). Furthermore, individuals, from Spain or Italy for example, born in 2000, are expected to 611 

live on average 2 years longer than individuals from the UK or USA. In addition, the healthy life 612 

expectancy of these individuals is also 2 years more (WHO, 2015). Thus, the Mediterranean diet is 613 

believed to play a role in prolonging both health-span and life-span. The Mediterranean diet has also 614 

been utilised as a strategy to treat age-related disease onset. For example, de Lorgeril et al. (1999) 615 

reported a 9.11% reduction in the rate of secondary cardiovascular events in patients who adhered 616 

to a Mediterranean diet compared to those that followed a standard diet. It was determined that 617 

each 1mmol/L increase in total cholesterol resulted in a 20-30% increase in the risk of recurrence (de 618 

Lorgeril et al., 1999). Therefore, a Mediterranean diet that results in decreased cholesterol levels is 619 

not only protective against primary cardiovascular events but also secondary events. The substantial 620 

evidence demonstrating the potential benefit of a Mediterranean diet on prolonging health-span as 621 

well as life-span has resulted in large-scale studies, such as the NU-AGE project arising (Santoro et 622 

al., 2014). The NU-AGE project aims to utilise the Mediterranean diet as a treatment strategy to slow 623 

the rate of inflammaging, in addition to establishing the molecular mechanisms underpinning the 624 

anti-inflammaging effect of this dietary approach (Santoro et al., 2014). 625 

 626 

9.0 The Recent Emergence of the Gut Microbiome  627 

The gut microbiome has a range of metabolic roles which maintain host heath, including; facilitating 628 

the digestion of starch, fibre, and sugars (Szilagyi et al., 2010); producing short-chain fatty acids (den 629 

Besten et al., 2013; Yu et al., 2010); vitamin absorption (Beulens et al., 2013); enhancing host 630 

immunity; preventing allergies (Shen and Clemente, 2015) and facilitating enterohepatic circulation 631 

of bile acids (section 3.2). Alteration to the microbiome can impact host health and this has 632 

increasingly been investigated as a contributor to disease. The close relationship between the 633 

microbiome and its human host has resulted in humans being described as metaorganisms (Biagi et 634 
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al., 2012). The impact of the microbiome on overall health was recently illustrated by a female 635 

subject that underwent a faecal transplant from her overweight, but otherwise healthy daughter for 636 

the treatment of recurrent Clostridium difficile infection. Post-transplant, the recipient experienced 637 

substantial weight gain, resulting in a weight gain of 41 pounds and an increase in BMI from 26 to 638 

34.5 at 36 months observation (Alang and Kelly, 2015). This suggests ‘obesity promoting’ microbiota 639 

can be transmitted from human to human, as previously observed in rodents (Ridaura et al., 2013). 640 

Understanding the role of the microbiome in health is challenging, due to complex bidirectional 641 

interactions with many biological systems. For example, it has been implicated in enhancing alveolar 642 

macrophage function in lung infections (Schuijt et al., 2015) and is thought to influence  brain 643 

morphology and function (Fernandez-Real et al., 2015). A decrease in Actinobacteria with age is 644 

associated with amygdala disruption and thalmic microstructure, reduced motor speed and 645 

attention, in addition to increased intra-abdominal fat (Fernandez-Real et al., 2015). Conversely, in a 646 

classic study, Killian et al. (1998) showed mice exposed to stress exhibited altered intestinal function 647 

(Kiliaan et al., 1998).  Moreover, administration of probiotic strains impact behaviour by improving 648 

mood and decreasing anxiety symptoms in both rodent and humans (Messaoudi et al., 2011; 649 

Savignac et al., 2015; Steenbergen et al., 2015). Thus, a bidirectional relationship exists between the 650 

gut and brain and it is likely that a similar relationship exists for other organ systems.   651 

9.1 The Gut Microbiome and CVD 652 

There is an association between the microbiota and CVD risk. This could be mediated via its effects 653 

on bile acid metabolism, or by its contribution to choline diet-induced trimethylamine N-oxide 654 

(TMAO) production (Joyce et al., 2014; Koeth et al., 2013). Susceptibility to atherosclerosis has also 655 

been demonstrated to be transferable by microbiota transplantation in murine models (Gregory et 656 

al., 2015). Moreover, gut microbiota dysbiosis has been associated with increased low-grade 657 

inflammation, which is linked with the development of atherosclerosis (Chistiakov et al., 2015). To 658 

examine the role of the gut microbiome on CVD risk, Fu et al. (2015) explored the potential 659 

relationships between operational taxonomic units (OTUs) with BMI, and blood lipids. High bacterial 660 

diversity was associated with a decreased BMI, and triglyceride levels, whilst a positive correlation 661 

was observed with HDL-C levels. A total of 66 OTUs were associated with BMI, while 114 were 662 

associated with triglycerides, and 34 OTUs with HDL. In particular Clostridiaceae/Lachnospiracease 663 

was able to modulate LDL-C levels. Fu et al. (2015) estimated that the gut microbiota is 664 

independently responsible for ≤6% of blood lipid level variation (Fu et al., 2015). 665 

 666 

9.2 The Gut Microbiome and Ageing 667 

Due to inter-individual variation, there is conflicting evidence on microbiome changes during ageing. 668 

In an elderly Irish cohort (65-96 years), the proportion of Bacteriodetes ranged from 3-92%, while 669 

Firmicutes ranged from 7-94% (Claesson et al., 2011). Further differences in the gut microbiome 670 

have also been observed in other population groups. For example, Clostridium cluster XIVa has been 671 

observed to decrease with age in Japanese, Finnish, and Austrian cohorts (Hayashi et al., 2003; Hippe 672 

et al., 2011; Makivuokko et al., 2010), whereas an increase has been observed in German and Italian 673 

cohorts (Mueller et al., 2006). Biagi et al. (2010) reported higher levels of the Clostridium cluster 674 

XIVa in elderly Italians (49%), when compared to younger individuals (44%), although the levels did 675 

reduce slightly in centenarians (34%) (Biagi et al., 2010). These conflicting results make it difficult to 676 
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establish an overall picture of how ageing effects the microbiome. However, it is likely that diet, 677 

lifestyle, antibiotic usage, and host health status accounts for much of this variation (Candela et al., 678 

2014; Claesson et al., 2012; O'Sullivan et al., 2013). For example, the reduction in species diversity 679 

witnessed with age in humans (Biagi et al., 2010), is amplified in those housed in long-term 680 

residential care (Claesson et al., 2012). Furthermore, a carnivorous or herbivorous diet can induce 681 

changes to the microbiome composition to favour metabolism of protein or carbohydrates (David et 682 

al., 2014). Moreover, Evard et al. (2012) demonstrated that a high fat diet decreased the expression 683 

of regenerating islet-derived 3 gamma (Reg3g), an antimicrobial lectin with activity against Gram-684 

positive species. This reduction of Reg3g increases colonisation of the intestinal epithelium, causing 685 

alterations in the microbiome, including a decrease in the Firmicutes/Bacteroides ratio. However, 686 

prebiotic administration is able to counteract this decrease in Reg3g (Everard et al., 2014).  687 

Bacteria from the plyla Bacteroidetes and Fimicutes contribute to 95% of faecal microbiota across 688 

ages, however a slight decline has been observed in centenarians (93%) (Biagi et al., 2010), while the 689 

Firmicutes/Bacteroidetes ratio also lowers with age (Park et al., 2015). In addition, Claesson et al. 690 

(2011) demonstrated Firmicutes increased from 40% to 51%, and Bacteriodetes decreased from 57% 691 

to 41%, when comparing a young cohort (28-46 years old) to an elderly cohort (≥65 years old) 692 

(Claesson et al., 2011). In contrast, Biagi et al. (2010) found that the Firmicutes/Bacteroidetes ratio 693 

increased from 3.9 in young individuals to 5.1 in elderly individuals, before decreasing to 3.6 in 694 

centenarians (Biagi et al., 2010). Furthermore, species diversity and number of Bifidobacterium and 695 

Lactobacillus species commonly declines with age (Hopkins and Macfarlane, 2002; Wang et al., 696 

2015). Hopkins and Macfarlane (2002) found that species diversity of Bifidobacterium and 697 

Lactobacillus decreased by 57.1 and 45.5% respectively between healthy young adults aged 21-34, 698 

and healthy elderly individuals, aged 67-73 years old. The number of Bifidobacterium and 699 

Lactobacillus species, measured as log10 CFU/g wet weight of faeces, decreased by 53.2 and 52.2% 700 

respectively with age (Hopkins and Macfarlane, 2002). In addition, with age, there is an increase of 701 

potentially pathogenic facultative anaerobes. For example, Proteobacteria increased from 1.2% to 702 

2.6% in human centenarians, whilst bacilli increased from 5% to 12% (Biagi et al., 2010). 703 

Evidence suggests centenarians have further altered gut microbiota than elderly cohorts (Biagi et al., 704 

2010). For example, when comparing the gut microbiota of cohorts exhibiting ‘normal life-spans’ 705 

(urbanised town communities, UTC) with those exhibiting exceptional longevity (longevity village 706 

communities, LVC) in South Korea,  LVC individuals displayed significantly higher numbers of 707 

Bacteroides, Prevotella, and Lachnospira, while levels of Dialister, Subdoligranulum, Megamonas, 708 

EF401882_g, and AM275436_g were greater in UTC individuals. The content of pro-inflammatory 709 

LPS was also significantly lower in the faecal samples of the LVC cohort. Higher LPS levels were 710 

associated with increased meat intake, decreased vegetable intake, and the presence of several 711 

bacterial species found only in the UTC cohort (Park et al., 2015). These factors could influence the 712 

progression of low-grade inflammation. This view is consolidated as bacteria associated with anti-713 

inflammatory effects were significantly higher in the LVC cohort, making it possible that factors such 714 

as diet, influence microbiome composition, and result in a drop in pro-inflammatory LPS and a 715 

concomitant reduction in inflammaging. Additionally, Biagi et al. (2010) found that an age-related 716 

increase in potentially pathogenic Proteobacteria was correlated with the upregulation of pro-717 

inflammatory IL-6 or IL-8 (Biagi et al., 2010). This further consolidates the belief, that reducing 718 

proinflammatory mediators such as LPS/cytokines could reduce inflammaging and promote healthy 719 

ageing (Biagi et al., 2010; Park et al., 2015). 720 
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The microbiome also affects metabolism. By investigating the bacterial genetic material in human 721 

faecal samples, Rampelli et al. (2013) revealed an increase in the bacterial genes involved in 722 

tryptophan metabolism with age. It is plausible that this age-dependent increase in bacterial 723 

tryptophan metabolism, decreases host bioavailability, a phenomenon which is implicated in a 724 

variety of inflammatory related conditions (Capuron et al., 2011; Murr et al., 2015). Furthermore, 725 

the abundance of genes involved in SCFA production reduced with age. Moreover there was a 726 

decrease in bacterial saccharolytic potential, while an increase in proteolytic potential, diverted 727 

metabolism towards putrefaction. Furthermore, increasing age corresponded with the enrichment 728 

of genes relating to pathobionts such as Escherichia (Rampelli et al., 2013). Future investigations will 729 

no doubt explore further bidirectional relationships between the regulation of lipid metabolism, the 730 

gut microbiome and intrinsic ageing. 731 

 732 

10.0 Current and Future Therapeutic Strategies 733 

The emerging bi-directional relationship between the gut microbiome and human host promotes 734 

this as a potential therapeutic target for the regulation of many host systems. Probiotic 735 

administration has been highlighted as an effective immunomodulator, which can have potential 736 

benefits on many diseases (Patel et al., 2015). For example, Makino et al. (2010) demonstrated that 737 

a daily probiotic intake for 8-12 weeks resulted in a 2.6 times lower risk of becoming infected with 738 

the influenza virus in individuals ≥40 years old (Makino et al., 2010). Furthermore, it has been 739 

demonstrated that administration of probiotics for several weeks prior to a flu vaccination, increases 740 

initial antibody titres in addition to maintaining these enhanced levels for increased lengths of time 741 

in elderly cohorts (Boge et al., 2009; Nagafuchi et al., 2015). As well as this, probiotics have been 742 

found to influence cholesterol metabolism. Al-Sheraji et al. (2012) demonstrated an 8 week probiotic 743 

supplementation in an elderly murine model significantly reduced plasma total cholesterol, 744 

triglycerides, LDL-C, and VLDL-C, in addition to increasing HDL-C levels. Moreover, probiotic 745 

supplementation significantly reduced the atherosclerotic index of these animals (Al-Sheraji et al., 746 

2012). These alterations in plasma cholesterol levels could be due to a number of factors, including, 747 

the generation of SCFAs which may reduce the rate of hepatic cholesterol synthesis, the increase in 748 

bile acid deconjugation resulting in reduced cholesterol absorption, and the increase in bile acid 749 

excretion (Al-Sheraji et al., 2012; Begley et al., 2006; Hara et al., 1999). 750 

Furthermore, dietary interventions such as the Dietary Approaches to Stop Hypertension (DASH) and 751 

portfolio diets, which target the risk factors for CVD, hypertension and hypercholesterolaemia 752 

respectively, can be utilised (Jenkins et al., 2015; Keith et al., 2015; Rifai and Silver, 2015). For 753 

example, a recent meta-analysis determined the DASH diet lowered systolic pressure by 6.74mmHg, 754 

and diastolic blood pressure by 3.54 mmHg (Saneei et al., 2014). Although the portfolio diet is less 755 

successful in lowering blood pressure, it is effective at modifying the lipoprotein profile. Jenkins et al. 756 

(2011) observed a 13.1 and 13.8% reduction in LDL-C in individuals undertaking the routine and 757 

intensive portfolio diets over a 6 month period. Adherence to the routine or intensive portfolio diet 758 

resulted in a respective calculated 10 year CHD risk reduction of 10.8 and 11.3% respectively (Jenkins 759 

et al., 2011). As there is a significant risk reduction for CHD, and few adverse reactions associated 760 

with these diets, wide-scale utilisation in elderly individuals may play a role in maintaining good 761 

health in later years. Further to this, dependence on pharmaceutical intervention may be reduced. 762 

Moreover, many of the food items associated with these diets contain phytochemicals that can 763 
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positively modulate infection and/or inflammaging and its related diseases (London and Beezhold, 764 

2015; McCarthy and O'Gara, 2015; Shayganni et al., 2015).  Another viable therapeutic avenue could 765 

be to inhibit PSCK9. Recently inhibition of this enzyme has proven to be effective at lowering LDL-C 766 

in patients with hypercholesterolaemia. By inhibiting PCSK9, the rate of LDLr degradation is reduced, 767 

and the rate of LDL-C clearance can be maintained. A systemic review and meta-analysis of phase 2 768 

or 3 randomised controlled trials revealed treatment with monoclonal antibodies targeting PCSK9 769 

lowered LDL-C levels by 47.49%, and reduced all-cause mortality and myocardial infarction risk, 770 

although cardiovascular mortality was unaffected (Navarese et al., 2015). 771 

 772 

11.0 The role of Mathematical Modelling in Identifying Future Therapeutic Strategies 773 

It is clear from the biological mechanisms and complex interactions outlined in this review that 774 

studying their dynamics is challenging. In recent years, research in this area has benefitted from 775 

adopting a systems biology paradigm to study the inherent complexities associated with ageing and 776 

metabolism (Mc Auley and Mooney, 2015a; Mc Auley et al., 2013; McAuley et al., 2009). The 777 

systems biology approach provides a framework for dealing with this intrinsic complexity. Central to 778 

this approach is the use of mathematical models, which work in tandem with experimental work by 779 

integrating experimental data and enabling dynamic behaviour to be modelled in a holistic manner 780 

(Enrique Salcedo-Sora and Mc Auley, 2016; Kilner et al., 2016; Mooney et al., 2016). This contrasts 781 

with the often reductionist approach that is commonly used in experimental biology, which 782 

generally focuses on a small number of processes operating in isolation. The utility of mathematical 783 

modelling lies in its inherent ability to facilitate hypothesis exploration, and to make predictions 784 

about the behaviour of the biological systems in question, and can often lead to a deeper 785 

understanding of the biology. Recently, there has been three excellent reviews of mathematical 786 

models in this area (Mc Auley and Mooney, 2015b; Paalvast et al., 2015; Parton et al., 2015), 787 

therefore our aim here is not to review each of these models, but to provide a synopsis of how 788 

mathematical models of cholesterol metabolism, and its associated processes can be used to 789 

enhance our understanding of how ageing impacts this core biological system. We addressed this 790 

problem recently by constructing a whole body mathematical model of cholesterol metabolism and 791 

its age associated dysregulation (Mc Auley et al., 2005; Mc Auley et al., 2012). Within this framework 792 

we included several key mechanisms, including LDLr turnover, intestinal cholesterol absorption, and 793 

endogenous cholesterol synthesis. Using the model, a number of mechanisms were explored. Firstly, 794 

using an in silico simulation we gradually reduced the efficiency of cholesterol absorption. 795 

Interestingly, by increasing cholesterol absorption from 50% to 80% by 65 years, we were able to 796 

show that LDL-C increased by 34 mg/dL from its baseline value of 100mg/dL at 20 years of age in a 797 

healthy adult male. However, the key finding of the model centred on hepatic LDLr. Using the model 798 

we were able to show that by decreasing the activity of the LDLr to 50% by age 65 years, this 799 

produced a rise in LDL-C of 116 mg/dL from a base line value of 100mg/dL at age 20 years in a 800 

healthy male. Our model is coded in the Systems Biology Markup Language, SBML (Hucka et al., 801 

2003), and is archived in the BioModels database (Le Novere et al., 2006) 802 

(http://www.ebi.ac.uk/biomodels-main/BIOMD0000000434). This makes the model straightforward 803 

to adapt and update.  804 

Recently other groups have adapted the model, for example, Mishra et al. (2014) included the 805 

variables body weight and physical activity and explored cholesterol absorption in depth (Mishra et 806 
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al., 2014). Moreover, Paalvast and colleagues used the model to conduct an in silico experiment 807 

utilizing the statin, simvastatin (Paalvast et al., 2015). To simulate this effect, the authors reduced 808 

hepatic cholesterol synthesis by 75%. This resulted in a reduction in LDL-C of 14% and 33% in six 809 

weeks and one year respectively. In recent years a number of other models have mathematically 810 

represented various aspects of cholesterol metabolism. Briefly, these include models of cholesterol 811 

biosynthesis (Bhattacharya et al., 2014; Kervizic and Corcos, 2008; Mazein et al., 2013; Watterson et 812 

al., 2013), lipoprotein dynamics (Chapman et al., 2010; Hübner et al., 2008; Shorten and Upreti, 813 

2005; Sips et al., 2014), LDLr regulation (Shankaran et al., 2007), hepatic LDL-C endocytosis (Wattis et 814 

al., 2008), and RCT (Lu et al., 2014). Most of these models do not focus on the ageing process as 815 

such, but it is possible they could be adapted and merged to explore in depth some of the changes 816 

that occur within cholesterol metabolism during ageing, discussed in this review, in particular the 817 

interaction of the gut microbiome with cholesterol metabolism.   818 

 819 

12.0 Discussion 820 

Developed populations are ageing, resulting in an increase in the diseases associated with ageing. Of 821 

the diseases whose prevalence increases with age, CVD related morbidity is by far the most 822 

common. The risk factors for CVD are many, however together with classic factors such as 823 

chronological age, smoking, sex, blood pressure and diabetes; lipid biomarkers have become the 824 

cornerstone in determining CVD risk. It is generally accepted the relationship between CVD risk and 825 

the dysregulation of lipid metabolism is at least in part due to the strong association that exists 826 

between elevated total cholesterol/LDL-C and atherosclerotic plaque formation. Conversely, due to 827 

its role in RCT, HDL-C is widely regarded as being anti-atherogenic, and evidenced by the inverse 828 

correlation between HDL-C levels and CVD. Fundamentally, cholesterol metabolism is maintained by 829 

a subtle balancing act between dietary ingestion, intestinal absorption, whole-body synthesis and 830 

excretion. These processes work in a coordinated fashion over a diverse range of spatial and 831 

temporal scales to help maintain whole body cholesterol balance. Changes to any of these processes 832 

can have a direct impact on the levels of LDL-C and HDL-C, thus indirectly influencing CVD risk. 833 

Changes to any of these processes can have a direct impact on the levels of LDL-C and HDL-C, thus 834 

indirectly influencing CVD risk, a finding of paramount importance, when considering the complex 835 

interactions that exist between cholesterol metabolism and the ageing process. This review has 836 

highlighted the ageing process does not affect cholesterol metabolism at solely one, or even a 837 

number of sites, but rather each regulatory component of cholesterol metabolism is affected by the 838 

ageing process. Worryingly, there is a paucity of studies detailing the mechanistic changes that occur 839 

during metabolism of this nutrient and ageing, and of those that exist, the majority tend to focus on 840 

murine models and were completed several decades ago. Despite this, our review uncovered a 841 

number of important findings about how cholesterol metabolism affects ageing. It was revealed that 842 

NPC1L1 expression significantly increases in the duodenum and jejunum with age, while ABCG5/G8 843 

expression is suppressed. Moreover, in humans it has been found that the rate of bile acid synthesis 844 

declines with age and occurs with a concomitant reduction in the hepatic expression of the rate 845 

limiting enzyme of bile acid synthesis, CYP7AI. Also, from an intestinal perspective it has been 846 

suggested that the rise in LDL-C that accompanies ageing is due to a decline in BSH+ species, such as 847 

Lactobacillus and Bifidobacterium. However, when we examined how lipoprotein dynamics change 848 

with age, it was suggested that the mechanistic explanation for the rise in LDL-C during ageing is due 849 
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to a reduction in the clearance rate for LDL-C from the circulation. This assertion is certainly in line 850 

with the central finding from our recent mechanistic model of whole body cholesterol metabolism, 851 

which revealed that a reduction in the hepatic clearance rate of LDL-C is the central driver in 852 

dysregulating cholesterol metabolism. However, for the purposes of abstraction our model did not 853 

incorporate many of the mechanisms outlined in this review. Therefore, it is our opinion that the 854 

dysregulation of cholesterol metabolism is the cumulative effect of ageing on all the components of 855 

cholesterol metabolism and it is naïve to single out any one aspect in particular. This view is 856 

supported by additional findings from this review that revealed how other important aspects of 857 

cholesterol metabolism are effected by the ageing. For instance, oxidative stress was shown not only 858 

to be involved in the progression of atherosclerosis but to also be involved in the oxidation of HDL 859 

particles. Moreover, various molecular mechanisms involved intracellular cholesterol homeostasis 860 

and biosynthesis have been shown to be effected by the metabolic regulators mTOR and sirtuins. 861 

These cellular metabolic hubs are widely regarded as having a key role to play in intrinsic ageing and 862 

health-span. For instance, mTORC1 regulates SREBP levels which in turn results in altered LDLr 863 

expression. In addition, Sirt6 has been identified as being involved in Srebp2 gene regulation. 864 

Collectively these findings emphasize that it not the dysregulation of one or even a few biological 865 

mechanisms; rather, age related dyslipidaemia is likely to be the result of a combination of several 866 

factors and future therapeutic interventions should be underpinned by this.  867 

This review also revealed diet has a key role to play in modulating cholesterol metabolism and could 868 

be a key therapeutic avenue to mitigate the effects ageing has on lipid metabolism. The central 869 

dietary paradigm of ageing research has been CR. This regime has been shown to have a positive 870 

cardioprotective effect in humans, part of which is brought about by an improvement in blood lipid 871 

profile in subjects undertaking this diet. More conventional diets also affect cholesterol metabolism. 872 

The high levels of dietary phytosterols, MUFA, and PUFA typically found in the Mediterranean diet 873 

for instance, have been shown to modulate cholesterol metabolism, by increasing hepatic 874 

expression of LDLr, in addition to reducing cholesterol absorption. Thus, experimental evidence 875 

suggests employment of healthy diets such as the Mediterranean diet, and supplementation with 876 

probiotics for example, could be utilised to slow the rate of LDL-C accumulation, associated with the 877 

ageing process.  878 

One way in which we could explore the relationship between diet, ageing and cholesterol 879 

metabolism further would be to use mechanistic mathematical models. Recently, mathematical 880 

models have been used to explore the dynamics of cholesterol metabolism and the effect that both 881 

ageing and dietary changes have on it. One area that a mathematical model could be used to explore 882 

in greater depth, is the bi-directional relationship between the gut microbiome and cholesterol 883 

metabolism. Thus, modelling could help to identify alternative therapeutic targets, which could 884 

reduce the dependence on pharmaceutical intervention in older people to improve blood lipid 885 

profile.  886 

 887 

13.0 Conclusion 888 

It is evident, the breakdown of cholesterol metabolism associated with ageing results in increased 889 

LDL-C and has important implications for health-span. Dietary intervention offers a potential non-890 

pharmacological avenue that could be invaluable for mitigating the insidious effects ageing has on 891 
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this system. In recent years, there have been an increase in the use of mechanistic mathematical 892 

models to explore complex systems such as cholesterol metabolism in a more integrated and non-893 

reductionist fashion. Such models should be increasingly used to determine new targets for 894 

therapeutic intervention. 895 
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Figure 1. Overview of cholesterol metabolism and age associated changes to mechanisms. Briefly 905 

outlined is 1) ingestion of dietary cholesterol, 2) intestinal absorption, 3) chylomicron transport, 4) 906 

cholesterol biosynthesis, 5) VLDL-C production and hydrolysis to IDL-C and LDL-C, 6) hepatic uptake 907 

of LDL-C, 7) peripheral uptake of LDL-C, 8) reverse cholesterol transport, 9) bile acid synthesis, and 908 

10) enterohepatic circulation of bile acids and bacterial modification. The age-related changes 909 

highlighted centre on some of the mechanisms responsible for the rise in LDL-C with age; the 910 

increase in intestinal absorption of cholesterol, the reduction of bile acid synthesis, the decrease in 911 

LDL-C clearance, and the decrease in BSH+ species in the digestive microbiome. 912 
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