2,293 research outputs found

    The WARPS Survey: VI. Galaxy Cluster and Source Identifications from Phase I

    Get PDF
    We present in catalog form the optical identifications for objects from the first phase of the Wide Angle ROSAT Pointed Survey (WARPS). WARPS is a serendipitous survey of relatively deep, pointed ROSAT observations for clusters of galaxies. The X-ray source detection algorithm used by WARPS is Voronoi Tessellation and Percolation (VTP), a technique which is equally sensitive to point sources and extended sources of low surface brightness. WARPS-I is based on the central regions of 86 ROSAT PSPC fields, covering an area of 16.2 square degrees. We describe here the X-ray source screening and optical identification process for WARPS-I, which yielded 34 clusters at 0.06<z<0.75. Twenty-two of these clusters form a complete, statistically well defined sample drawn from 75 of these 86 fields, covering an area of 14.1 square degrees, with a flux limit of F (0.5-2.0 keV) = 6.5 \times 10^{-14} erg cm^{-2} s^{-1}}. This sample can be used to study the properties and evolution of the gas, galaxy and dark matter content of clusters, and to constrain cosmological parameters. We compare in detail the identification process and findings of WARPS to those from other recently published X-ray surveys for clusters, including RDCS, SHARC-Bright, SHARC-south and the CfA 160 deg2^2 survey.Comment: v3 reflects minor updates to tables 2 and

    Delta-Function Bose Gas Picture of S=1 Antiferromagnetic Quantum Spin Chains Near Critical Fields

    Full text link
    We study the zero-temperature magnetization curve (M-H curve) of the S=1 bilinear-biquadratic spin chain, whose Hamiltonian is given by H=iSiSi+1+β(SiSi+1)2withH=\sum_{i} S_i S_{i+1}+\beta (S_iS_{i+1})^2 with 0 \leq \beta <1.Wefocusonvalidityofthedeltafunctionbosegaspicturenearthetwocriticalfields:thesaturationfield. We focus on validity of the delta-function bose-gas picture near the two critical fields: the saturation field H_sandthelowercriticalfield and the lower critical field H_cassociatedwiththeHaldanegap.Near associated with the Haldane gap. Near H_s,wetakelowenergyeffectiveSmatrixapproach,whichgivescorrecteffectivebosegascouplingconstant, we take ``low-energy effective S-matrix'' approach, which gives correct effective bose-gas coupling constant c,differentfromthespinwavevalue.ComparingtheMHcurveofthebosegaswiththeproductwavefunctionrenormalizationgroup(PWFRG)calculation,excellentagreementisseen.Near, different from the spin-wave value. Comparing the M-H curve of the bose gas with the product-wavefunction renormalization group (PWFRG) calculation, excellent agreement is seen. Near H_c,comparingthePWFRGresultwiththebosegasprediction,wefindthattherearetwodistinctregionsof, comparing the PWFRG result with the bose-gas prediction, we find that there are two distinct regions of \betaseparatedbyacriticalvalue separated by a critical value \beta_c(\approx 0.41).Intheregion. In the region 0<\beta<\beta_c,theeffectivecoupling, the effective coupling cispositivebutrathersmall.Thesmallvalueof is positive but rather small. The small value of cmakesthecriticalregionofthesquarerootbehavior makes the ``critical region'' of the square-root behavior M\sim \sqrt{H-H_c}verynarrow.Further,wefindthatinthe very narrow. Further, we find that in the \beta \to \beta_c-0,thesquarerootbehaviortransmutestoadifferentone,, the square-root behavior transmutes to a different one, M\sim (H-H_c)^{1/4}.Intheregion. In the region \beta_c<\beta <1,thesquarerootbehaviorisratherdistinct,buttheeffectivecoupling, the square-root behavior is rather distinct, but the effective coupling c$ becomes negative.Comment: 6 pages, RevTeX, 8 ps figure

    DANSR: A tool for the detection of annotated and novel small RNAs

    Get PDF
    Existing small noncoding RNA analysis tools are optimized for processing short sequencing reads (17-35 nucleotides) to monitor microRNA expression. However, these strategies under-represent many biologically relevant classes of small noncoding RNAs in the 36-200 nucleotides length range (tRNAs, snoRNAs, etc.). To address this, we developed DANSR, a tool for the detection of annotated and novel small RNAs using sequencing reads with variable lengths (ranging from 17-200 nt). While DANSR is broadly applicable to any small RNA dataset, we applied it to a cohort of matched normal, primary, and distant metastatic colorectal cancer specimens to demonstrate its ability to quantify annotated small RNAs, discover novel genes, and calculate differential expression. DANSR is available as an open source tool

    Measuring our universe from galaxy redshift surveys

    Get PDF
    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local universe looks like. While the galaxy distribution traces the bright side of the universe, detailed quantitative analyses of the data have even revealed the dark side of the universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of Precision Cosmology.Comment: 82 pages, 31 figures, invited review article published in Living Reviews in Relativity, http://www.livingreviews.org/lrr-2004-

    Measurements of Flavour Dependent Fragmentation Functions in Z^0 -> qq(bar) Events

    Get PDF
    Fragmentation functions for charged particles in Z -> qq(bar) events have been measured for bottom (b), charm (c) and light (uds) quarks as well as for all flavours together. The results are based on data recorded between 1990 and 1995 using the OPAL detector at LEP. Event samples with different flavour compositions were formed using reconstructed D* mesons and secondary vertices. The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max are also presented separately for uds, c and b quark events. The fragmentation function for b quarks is significantly softer than for uds quarks.Comment: 29 pages, LaTeX, 5 eps figures (and colour figs) included, submitted to Eur. Phys. J.

    Bose-Einstein Correlations of Three Charged Pions in Hadronic Z^0 Decays

    Get PDF
    Bose-Einstein Correlations (BEC) of three identical charged pions were studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP. The genuine three-pion correlations, corrected for the Coulomb effect, were separated from the known two-pion correlations by a new subtraction procedure. A significant genuine three-pion BEC enhancement near threshold was observed having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029 (syst.) fm and a strength of \lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041 (syst.). The Coulomb correction was found to increase the \lambda_3 value by \~9% and to reduce r_3 by ~6%. The measured \lambda_3 corresponds to a value of 0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the three-pion sample purity. A relation between the two-pion and the three-pion source parameters is discussed.Comment: 19 pages, LaTeX, 5 eps figures included, accepted by Eur. Phys. J.

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    W+W- production and triple gauge boson couplings at LEP energies up to 183 GeV

    Get PDF
    A study of W-pair production in e+e- annihilations at Lep2 is presented, based on 877 W+W- candidates corresponding to an integrated luminosity of 57 pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the W-pair production and decay, as well as their branching fractions, are described by the Standard Model, the W-pair production cross-section is measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton universality and combining with our results from lower centre-of-mass energies, the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +- 0.5 (syst.)%. The number of W-pair candidates and the angular distributions for each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge boson couplings. After combining these values with our results from lower centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37, D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include both statistical and systematic uncertainties and each coupling is determined setting the other two couplings to the Standard Model value. The fraction of W bosons produced with a longitudinal polarisation is measured to be 0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with the Standard Model expectations.Comment: 48 pages, LaTeX, including 13 eps or ps figures, submitted to European Physical Journal

    Bose-Einstein Correlations in e+e- to W+W- at 172 and 183 GeV

    Get PDF
    Bose-Einstein correlations between like-charge pions are studied in hadronic final states produced by e+e- annihilations at center-of-mass energies of 172 and 183 GeV. Three event samples are studied, each dominated by one of the processes W+W- to qqlnu, W+W- to qqqq, or (Z/g)* to qq. After demonstrating the existence of Bose-Einstein correlations in W decays, an attempt is made to determine Bose-Einstein correlations for pions originating from the same W boson and from different W bosons, as well as for pions from (Z/g)* to qq events. The following results are obtained for the individual chaoticity parameters lambda assuming a common source radius R: lambda_same = 0.63 +- 0.19 +- 0.14, lambda_diff = 0.22 +- 0.53 +- 0.14, lambda_Z = 0.47 +- 0.11 +- 0.08, R = 0.92 +- 0.09 +- 0.09. In each case, the first error is statistical and the second is systematic. At the current level of statistical precision it is not established whether Bose-Einstein correlations, between pions from different W bosons exist or not.Comment: 24 pages, LaTeX, including 6 eps figures, submitted to European Physical Journal

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore