670 research outputs found
Lower hybrid oscillating two-stream instability in a plasma with magnetic shear
Magnetic shear is found to have a strong effect on the propagation characteristics of the lower hybrid parametric daughter waves but no significant effect on the pump wave. The analysis of the OTS instability shows that the convective damping introduced by magnetic shear acts on a distance L H(me/mi)½, where H is the magnetic shear scale length. There are two regimes for the convective damping, depending on the wavelength of the parametric daughter waves. For small wavelengths the growth rates are linear functions of (kL)-1. For large wavelengths the growth rates are exponentially decreasing functions of (kL)-
Evidence for functional GABAA but not GABAC receptors on mouse cone photoreceptors
International audienc
In Vitro Aggregation Assays for the Characterization of \u3b1-synuclein Prion-Like Properties
Aggregation of \u3b1-synuclein plays a crucial role in the pathogenesis of synucleinopathies, a group of neurodegenerative diseases including Parkinson disease (PD), dementia with Lewy bodies (DLB), diffuse Lewy body disease (DLBD) and multiple system atrophy (MSA). The common feature of these diseases is a pathological deposition of protein aggregates, known as Lewy bodies (LBs) in the central nervous system. The major component of these aggregates is \u3b1-synuclein, a natively unfolded protein, which may undergo dramatic structural changes resulting in the formation of \u3b2-sheet rich assemblies. In vitro studies have shown that recombinant \u3b1-synuclein protein may polymerize into amyloidogenic fibrils resembling those found in LBs. These aggregates may be uptaken and propagated between cells in a prion-like manner. Here we present the mechanisms and kinetics of \u3b1-synuclein aggregation in vitro, as well as crucial factors affecting this process. We also describe how PD-linked \u3b1-synuclein mutations and some exogenous factors modulate in vitro aggregation. Furthermore, we present a current knowledge on the mechanisms by which extracellular aggregates may be internalized and propagated between cells, as well as the mechanisms of their toxicity. \ua9 2014 Landes Bioscience
ESMD Space Grant Faculty Report
The strength of the Exploration Systems Mission Directorate ESMD Faculty Project lies in its ability to meet National Aeronautics Space Administration NASA's Strategic Educational Outcome 1 by developing a sustainable and long-term integration of student involvement at academic institutions with all NASA Centers. This outcome is achieved by a three-fold approach: 1) by collecting Senior Design projects pertaining to Constellation work performed at each of the ten NASA Centers, 2) by engaging students at Minority Serving Institutions in the art of systems engineering and systems design of technologies required for space exploration, and 3) by identifying potential internships at each Center relative to exploration that provide students who are supported by their institutional Space Grant to engage in on-going mission-level and explorative systems designs. The objectives of the ESMD Faculty Project are to: 1. Aid the Centers (both Education Offices and associated technical organizations) in providing relevant opportunities for the ESMD Space Grant Program to support student and faculty in Senior Design projects 2. Enable better matches between the ESMD work required and what the Space Grant Consortia can do to effectively contribute to NASA programs 3. Provide the Space Grant Consortia an opportunity to strengthen relations with the NASA Centers 4. Develop better collective understanding of the U.S. Space Exploration Policy by the Center, Space Grant, faculty, Education Office, and students 5. Enable Space Grant institution faculty to better prepare their students to meet current and future NASA needs 6. Enable the Center Education Offices to strengthen their ties to their technical organizations and Space Grant Consortia 7. Aid KSC in gaining a greater and more detailed understanding of each of the Center activities Senior Design projects are intended to stimulate undergraduate students on current NASA activities related to lunar, Mars, and other planetary missions and to bring out innovative and novel ideas that can be used to complement those currently under development at respective NASA Centers. Additionally, such academic involvement would better the prospects for graduating seniors to pursue graduate studies and to seek careers in the space industry with a strong sense for systems engineering and understanding of design concepts. Internships, on the other hand, are intended to provide hands-on experience to students by engaging them in diverse state-of-the-art technology development, prototype bread-boarding, computer modeling and simulations, hardware and software testing, and other activities that provide students a strong perspective of NASA's vision and mission in enhancing the knowledge of Earth and space planetary sciences. Ten faculty members, each from a Space Grant Consortium-affiliated university, worked at ten NASA Centers for five weeks between June 2 and July 3, 2008. The project objectives listed above were achieved. In addition to collecting data on Senior Design ideas and identifying possible internships that would benefit NASA/ESMD, the faculty fellows promoted and collected data when required for other ESMD-funded programs and helped the Center's Education Office, as,needed.
Nonintegrable Interaction of Ion-Acoustic and Electromagnetic Waves in a Plasma
In this paper we re-examine the one-dimensional interaction of
electromagnetic and ion acoustic waves in a plasma. Our model is similar to one
solved by Rao et al. (Phys. Fluids, vol. 26, 2488 (1983)) under a number of
analytical approximations. Here we perform a numerical investigation to examine
the stability of the model. We find that for slightly over dense plasmas, the
propagation of stable solitary modes can occur in an adiabatic regime where the
ion acoustic electric field potential is enslaved to the electromagnetic field
of a laser. But if the laser intensity or plasma density increases or the laser
frequency decreases, the adiabatic regime loses stability via a transition to
chaos. New asymptotic states are attained when the adiabatic regime no longer
exists. In these new states, the plasma becomes rarefied, and the laser field
tends to behave like a vacuum field.Comment: 19 pages, REVTeX, 6 ps figures, accepted for publication in Phys.
Rev.
A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics
Recent results suggest that social memory requires the dorsal hippocampal CA2 region as well as a subset of ventral CA1 neurons. However, it is unclear whether dorsal CA2 and ventral CA1 represent parallel or sequential circuits. Moreover, because evidence implicating CA2 in social memory comes largely from long-term inactivation experiments, the dynamic role of CA2 in social memory remains unclear. Here, we use pharmacogenetics and optogenetics in mice to acutely and reversibly silence dorsal CA2 and its projections to ventral hippocampus. We show that dorsal CA2 activity is critical for encoding, consolidation, and recall phases of social memory. Moreover, dorsal CA2 contributes to social memory by providing strong excitatory input to the same subregion of ventral CA1 that contains the subset of neurons implicated in social memory. Thus, our studies provide new insights into a dorsal CA2 to ventral CA1 circuit whose dynamic activity is necessary for social memory.We thank David H. Brann and the other members of the Siegelbaum laboratory for
helpful discussions and João Cerqueira for critical input. This work was supported by
R01 MH104602 and R01 MH106629 from the NIH (S.A.S.), by PD/BD/113700/2015
from the Portuguese Foundation for Science and Technology (T.M.) and by the European Molecular Biology Organization (A.O.)
Caffeine-induced synaptic potentiation in hippocampal CA2 neurons
Caffeine enhances cognition, but even high non-physiological doses have modest effects on synapses. A 1 adenosine receptors (A 1 Rs) are antagonized by caffeine and are most highly enriched in hippocampal CA2, which has not been studied in this context. We found that physiological doses of caffeine in vivo or A 1 R antagonists in vitro induced robust, long-lasting potentiation of synaptic transmission in rat CA2 without affecting other regions of the hippocampus
The "Ram Effect": A "Non-Classical" Mechanism for Inducing LH Surges in Sheep
During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the "ram effect" in ewes that had a "precocious" LH surge (starting within 6 hours), a "normal" surge (between 6 and 28h) and "late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. "Precocious" LH surges were not preceded by a large increase in E2 unlike "normal" surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the "precocious" LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the "ram effect". Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators
The "ram effect": new insights into neural modulation of the gonadotropic axis by male odors and socio-sexual interactions
Reproduction in mammals is controlled by the hypothalamo-pituitary-gonadal (HPG) axis under the influence of external and internal factors such as photoperiod, stress, nutrition, and social interactions. Sheep are seasonal breeders and stop mating when day length is increasing (anestrus). However, interactions with a sexually active ram during this period can override the steroid negative feedback responsible for the anoestrus state, stimulate LH secretion and eventually reinstate cyclicity. This is known as the ram effect and research into the mechanisms underlying it is shedding new light on HPG axis regulation. The first step in the ram effect is increased LH pulsatile secretion in anestrus ewes exposed to a sexually active male or only to its fleece, the latter finding indicating a pheromone-like effect. Estradiol secretion increases in all ewes and this eventually induces a LH surge and ovulation, just as during the breeding season. An exception is a minority of ewes that exhibit a precocious LH surge (within 4h) with no prior increase in estradiol. The main olfactory system and the cortical nucleus of the amygdala are critical brain structures in mediating the ram effect since it is blocked by their inactivation. Sexual experience is also important since activation (increased c-fos expression) in these and other regions is greatly reduced in sexually naïve ewes. In adult ewes kisspeptin neurons in both arcuate and preoptic regions and some preoptic GnRH neurons are activated 2h after exposure to a ram. Exposure to rams also activates noradrenergic neurons in the locus coeruleus and A1 nucleus and increased noradrenalin release occurs in the posterior preoptic area. Pharmacological modulation of this system modifies LH secretion in response to the male or his odor. Together these results show that the ram effect can be a fruitful model to promote both a better understanding of the neural and hormonal regulation of the HPG axis in general and also the spe
- …