11 research outputs found

    Tolerability of Ramipril 10 mg Daily in High-risk Cardiovascular Patients in Taiwan: Experience from Kaohsiung Medical University Chung-Ho Memorial Hospital

    Get PDF
    The Heart Outcomes Prevention Evaluation (HOPE) study demonstrated that the angiotensin-converting enzyme inhibitor, ramipril, significantly reduces mortality, myocardial infarction and stroke in high-risk cardiovascular patients, beyond the benefits from blood pressure lowering. The tolerability of ramipril 10 mg/day has been an important concern when applying these results. Following the same criteria as the HOPE study, we investigated the adverse effects profile and tolerability of 10 mg ramipril in high-risk patients at our institution. In total, 92 patients with high cardiovascular risk were eligible for this study. Initially, ramipril was prescribed 2.5 mg orally once daily, and then titrated up to 5.0, 7.5, and 10.0 mg/day at 1-month intervals. The target maintenance dose was 10 mg/day. All adverse events were recorded during at least 3 months of follow-up. After 4-6 months of the titration protocol, only 18 patients (25.3%) reached and remained on ramipril 10 mg/day; 11 (15.5%), 22 (30.9%), and 20 patients (28.2%) remained on 2.5, 5.0, and 7.5 mg/day, respectively. Twenty-one patients (22.6%) had at least one adverse event. Twelve patients (13.0%) stopped treatment because of adverse effects. A total of 23 episodes of adverse events were reported, including cough (15.1%), dizziness (6.0%), and hypotension (2.4%). Ramipril was relatively well tolerated in our study population. However, only one-quarter of our patients reached the target maintenance dose of 10 mg/day. Dry cough, dizziness, and hypotension were the major side effects. About 15% of our patients discontinued ramipril treatment, which is comparable with previous reports

    Technology roadmap for flexible sensors

    No full text
    Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.Agency for Science, Technology and Research (A*STAR)National Research Foundation (NRF)Submitted/Accepted versionY.L., Z.L., M.Z., and X.C. acknowledge the National Research Foundation, Singapore (NRF) under NRF’s Medium Sized Centre: Singapore Hybrid-Integrated Next-Generation ÎŒElectronics (SHINE) Centre funding programme, and AME programming funding scheme of Cyber Physiochemical Interface (CPI) project (no. A18A1b0045). Y.L. acknowledges National Natural Science Foundation of China (62201243). C.J. acknowledges funding support from the National Key R&D Program of China (no. 2019YFA0706100), the National Natural Science Foundation of China (82151305), Lingang Laboratory (LG-QS-202202-09). T.Q.T. and N.E.L. acknowledge support by the Basic Science Research Program (no. 2020R1A2C3013480) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT. A.F. acknowledges the AFOSR (grant FA9550-22-1-0423). Y.L. and Y.Z. would like to acknowledge the NSF (award no. 2134664) and NIH (award no. R01HD108473) for financial support. X.F. acknowledges the support from the National Natural Science Foundation of China (grant no. U20A6001). L.Y. would like to thank the A*STAR Central Research Fund (CRF) and the AME Programmatic A18A1b0045 (Cyber Physiochemical Interfaces) for funding support. C.F.G. acknowledges the National Natural Science Foundation of China (no. T2225017). T.Q.T. acknowledges the Brain Pool Program (No. 2020H1D3A2A02111068) through the National Research Foundation (NRF) funded by the Ministry of Science. Z.L. acknowledges the support from RIE2020 AME Programmatic Grant funded by A*STAR-SERC, Singapore (Grant No. A18A1b0045). X.G. acknowledges funding support through the Shanghai Science and Technology Commission (grant no. 19JC1412400), the National Science Fund for Excellent Young Scholars (grant no. 61922057). C.D. acknowledges National Science Foundation CAREER: Conformable Piezoelectrics for Soft Tissue Imaging (grant no. 2044688) and MIT Media Lab Consortium funding. D.K. and O.G.S. acknowledge Leibniz Association and the German Research Foundation DFG (Gottfried Wilhelm Leibniz Program SCHM 1298/22-1, KA5051/1-1 and KA 5051/3-1), as well as the Leibniz association (Leibniz Transfer Program T62/2019). C.W. acknowledges the National Key Research and Development Program of China (grant no. 2021YFA1202600), National Natural Science Foundation of China (grant no. 62174082). A.V.-Y.T., E.Z., Y.Z., X.Z., and J.P. acknowledge the National Research Foundation, Singapore (NRF) under NRF’s Medium Sized Centre: Singapore Hybrid-Integrated Next-Generation ÎŒElectronics (SHINE) Centre funding programme, and AME programming funding scheme of Cyber Physiochemical Interface (CPI) project (no. A18A1b0045). R.Z. acknowledges National Natural Science Foundation of China (grant no. 51735007) and Beijing Natural Science Foundation (grant no. 3191001). N.M. acknowledges the support by JST PRESTO Grant Number JPMJPR20B7 and JST Adaptable and Seamless Technology transfer Program through Target-driven R&D (ASTEP) grant number JPMJTM22BK. C.P. acknowledges the Korean government (Ministry of Science and ICT, MSIT) (2022R1A4A3032923). M.W. acknowledges the National Key R&D Program of China under Grant (2021YFB3601200). X.Z. acknowledges National Natural Science Foundation of China (no. 62074029). S.X. acknowledges the 3M nontenured faculty award. T.-W.L. and D.-G.S. acknowledge the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (grant no. NRF-2022M3C1A3081211). C.T.L. would like to acknowledge support from the Institute for Health Innovation and Technology (iHealthtech), the MechanoBioEngineering Laboratory at the Department of Biomedical Engineering and the Institute for Functional Intelligent Materials (I-FIM) at the National University of Singapore (NUS). C.T.L. also acknowledges support from the National Research Foundation and A*STAR, under its RIE2020 Industry Alignment Fund − Industry Collaboration Projects (IAF-ICP) (grant no. I2001E0059) − SIA-NUS Digital Aviation Corp Lab and the NUS ARTIC Research (grant no. HFM-RP1). X.Y. acknowledges funding support by City University of Hong Kong (grant no. 9667221). T.X. and X.Z. acknowledge National Natural Science Foundation of China (22234006). B.C.K.T. acknowledges Cyber-Physiochemical Interfaces CPI, A*STAR A18A1b0045. H.G. acknowledges a research start-up grant (002479-00001) from Nanyang Technological University and the Agency for Science, Technology and Research (A*STAR) in Singapore. W.G. acknowledges National Science Foundation grant 2145802. D.J.L. acknowledges support from the US National Science Foundation grant number CBET-2223566. G.Y. acknowledges support from The Welch Foundation award F-1861, and Camille Dreyfus Teacher-Scholar Award. M.D.D. acknowledges funding support from NSF (grant no. EEC1160483). J.-H.A acknowledges the National Research Foundation of Korea (NRF-2015R1A3A2066337). J.C. acknowledges the Henry Samueli School of Engineering & Applied Science and the Department of Bioengineering at the University of California, Los Angeles for startup support and a Brain & Behavior Research Foundation Young Investigator Grant. K.T. acknowledges JST AIP Accelerated Program (no. JPMJCR21U1) and JSPS KAKENHI (grant no. JP22H00594). P.S.W. acknowledges the National Science Foundation (CMMI1636136) for support. A.M.A., M.C.H., and P.S.W. thank the National Institute on Drug Abuse (DA045550) for support. S.M. and X.C. appreciated the support from the Smart Grippers for Soft Robotics (SGSR) Programme under the National Research Foundation, Prime Minister’s Office, Singapore under its Campus of Research Excellence and Technological Enterprise (CREATE) programme

    Nanocomposite-Based Photodynamic Therapy Strategies for Deep Tumor Treatment

    No full text

    Synthesis and Modification of Silicon Nanosheets and Other Silicon Nanomaterials

    No full text
    corecore