773 research outputs found

    Large Bi-2212 single crystal growth by the floating-zone technique

    Full text link
    Effects of the growth velocity on the crystal growth behavior of Bi_2Sr_2Ca_1Cu_2O_x (Bi-2212) have been studied by floating zone technique. The results show that a necessary condition for obtaining large single crystals along the c-axis is that the solid-liquid interface of a growing rod maintains a stable planar growth front. The planar liquid-solid growth interface tends to break down into a cellular interface, while the growth velocity is higher than 0.25 mm/h. Single crystals of up to 50x7.2x7 mm3 along the a-, b- and caxes have been cut in a 7.2 mm diameter rod with optimum growth conditions. Tconset is 91 K measured by magnetic properties measurement system (MPMS) for as-grown crystals. Optical polarization microscope and neutron diffraction show that the quality of the single crystals is good.Comment: 5 pages, 4 figure

    Quantum Transport in Two-Channel Fractional Quantum Hall Edges

    Full text link
    We study the effect of backward scatterings in the tunneling at a point contact between the edges of a second level hierarchical fractional quantum Hall states. A universal scaling dimension of the tunneling conductance is obtained only when both of the edge channels propagate in the same direction. It is shown that the quasiparticle tunneling picture and the electron tunneling picture give different scaling behaviors of the conductances, which indicates the existence of a crossover between the two pictures. When the direction of two edge-channels are opposite, e.g. in the case of MacDonald's edge construction for the ν=2/3\nu=2/3 state, the phase diagram is divided into two domains giving different temperature dependence of the conductance.Comment: 21 pages (REVTeX and 1 Postscript figure

    Chaos in free electron laser oscillators

    Full text link
    The chaotic nature of a storage-ring Free Electron Laser (FEL) is investigated. The derivation of a low embedding dimension for the dynamics allows the low-dimensionality of this complex system to be observed, whereas its unpredictability is demonstrated, in some ranges of parameters, by a positive Lyapounov exponent. The route to chaos is then explored by tuning a single control parameter, and a period-doubling cascade is evidenced, as well as intermittence.Comment: Accepted in EPJ

    Renormalization Group and Fermi Liquid Theory

    Full text link
    We give a Hamiltonian based interpretation of microscopic Fermi liquid theory within a renormalization group framework. We identify the fixed point Hamiltonian of Fermi liquid theory, with the leading order corrections, and show that this Hamiltonian in mean field theory gives the Landau phenomenological theory. A renormalized perturbation theory is developed for calculations beyond the Fermi liquid regime. We also briefly discuss the breakdown of Fermi liquid theory as it occurs in the Luttinger model, and the infinite dimensional Hubbard model at the Mott transition.Comment: 37 pages, postscript, Imperial College preprint 1994. Latex file plus separate figures available on reques

    Anomalous c-axis charge dynamics in copper oxide materials

    Full text link
    Within the t-J model, the c-axis charge dynamics of the copper oxide materials in the underdoped and optimally doped regimes is studied by considering the incoherent interlayer hopping. It is shown that the c-axis charge dynamics is mainly governed by the scattering from the in-plane fluctuation. In the optimally doped regime, the c-axis resistivity is a linear in temperatures, and shows the metallic-like behavior for all temperatures, while the c-axis resistivity in the underdoped regime is characterized by a crossover from the high temperature metallic-like behavior to the low temperature semiconducting-like behavior, which are consistent with experiments and numerical simulations.Comment: 6 pages, Latex, Three figures are adde

    Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates

    Full text link
    The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping from a pseudogap state in the underdoped cuprates to a superconducting state at optimal and overdoping, has been interpreted as evidence that the pseudogap must be due to precursor pairing. We suggest an alternative explanation, that the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the pseudogap could actually be due to any of a number of nesting instabilities, including charge or spin density waves or more exotic phases. We present a detailed analysis of this competition for one particular model: the pinned Balseiro-Falicov model of competing charge density wave and (s-wave) superconductivity. We show that most of the anomalous features of both tunneling and photoemission follow naturally from the model, including the smooth crossover, the general shape of the pseudogap phase diagram, the shrinking Fermi surface of the pseudogap phase, and the asymmetry of the tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1 and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be described in detail by this model, but we suggest a simple generalization to account for inhomogeneity, which does provide an adequate description. We show that it should be possible, with a combination of photoemission and tunneling, to demonstrate the extent of pinning of the Fermi level to the Van Hove singularity. A preliminary analysis of the data suggests pinning in the underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure

    Non-zero temperature transport near quantum critical points

    Full text link
    We describe the nature of charge transport at non-zero temperatures (TT) above the two-dimensional (dd) superfluid-insulator quantum critical point. We argue that the transport is characterized by inelastic collisions among thermally excited carriers at a rate of order kBT/k_B T/\hbar. This implies that the transport at frequencies ωkBT/\omega \ll k_B T/\hbar is in the hydrodynamic, collision-dominated (or `incoherent') regime, while ωkBT/\omega \gg k_B T/\hbar is the collisionless (or `phase-coherent') regime. The conductivity is argued to be e2/he^2 / h times a non-trivial universal scaling function of ω/kBT\hbar \omega / k_B T, and not independent of ω/kBT\hbar \omega/k_B T, as has been previously claimed, or implicitly assumed. The experimentally measured d.c. conductivity is the hydrodynamic ω/kBT0\hbar \omega/k_B T \to 0 limit of this function, and is a universal number times e2/he^2 / h, even though the transport is incoherent. Previous work determined the conductivity by incorrectly assuming it was also equal to the collisionless ω/kBT\hbar \omega/k_B T \to \infty limit of the scaling function, which actually describes phase-coherent transport with a conductivity given by a different universal number times e2/he^2 / h. We provide the first computation of the universal d.c. conductivity in a disorder-free boson model, along with explicit crossover functions, using a quantum Boltzmann equation and an expansion in ϵ=3d\epsilon=3-d. The case of spin transport near quantum critical points in antiferromagnets is also discussed. Similar ideas should apply to the transitions in quantum Hall systems and to metal-insulator transitions. We suggest experimental tests of our picture and speculate on a new route to self-duality at two-dimensional quantum critical points.Comment: Feedback incorporated into numerous clarifying remarks; additional appendix discusses relationship to transport in dissipative quantum mechanics and quantum Hall edge state tunnelling problems, stimulated by discussions with E. Fradki

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore