139 research outputs found

    Criteria for programming investment project selection.

    Get PDF

    The generalized rate of return.

    Get PDF

    Perspectives on Interstellar Dust Inside and Outside of the Heliosphere

    Full text link
    Measurements by dust detectors on interplanetary spacecraft appear to indicate a substantial flux of interstellar particles with masses exceeding 10^{-12}gram. The reported abundance of these massive grains cannot be typical of interstellar gas: it is incompatible with both interstellar elemental abundances and the observed extinction properties of the interstellar dust population. We discuss the likelihood that the Solar System is by chance located near an unusual concentration of massive grains and conclude that this is unlikely, unless dynamical processes in the ISM are responsible for such concentrations. Radiation pressure might conceivably drive large grains into "magnetic valleys". If the influx direction of interstellar gas and dust is varying on a ~10 yr timescale, as suggested by some observations, this would have dramatic implications for the small-scale structure of the interstellar medium.Comment: 13 pages. To appear in Space Science Review

    Spitzer Observations of Cold Dust Galaxies

    Full text link
    We combine new Spitzer Space Telescope observations in the mid- and far-infrared with SCUBA 850 micron observations to improve the measurement of dust temperatures, masses and luminosities for 11 galaxies of the SCUBA Local Universe Galaxy Survey (SLUGS). By fitting dust models we measure typical dust masses of 10E7.9 M_sol and dust luminosities of ~ 10E10 L_sol, for galaxies with modest star formation rates. The data presented in this paper combined with previous observations show that cold dust is present in all types of spiral galaxies and is a major contributor to their total luminosity. Because of the lower dust temperature of the SCUBA sources measured in this paper, they have flatter Far-IR nu F_nu(160um)/nu F_nu(850um) slopes than the larger Spitzer Nearby Galaxies Survey (SINGS), the sample that provides the best measurements of the dust properties of galaxies in the nearby universe. The new data presented here added to SINGS extend the parameter space that is well covered by local galaxies, providing a comprehensive set of templates that can be used to interpret the observations of nearby and distant galaxies.Comment: Accepted by A.J. 16 pages, 10 figures, 7 tables. High resolution version at http://mips.as.arizona.edu/~cnaw/slugs_hires.pd

    Interstellar extinction and polarization -- A spheroidal dust grain approach perspective

    Full text link
    We extend and investigate the spheroidal model of interstellar dust grains used to simultaneously interpret the observed interstellar extinction and polarization curves. We compare our model with similar models recently suggested by other authors, study its properties and apply it to fit the normalized extinction A(λ)/AVA(\lambda)/A_{\rm V} and the polarizing efficiency P(λ)/A(λ)P(\lambda)/A(\lambda) measured in the near IR to far UV region for several stars seen through one large cloud. We conclude that the model parameter Ω\Omega being the angle between the line of sight and the magnetic field direction can be more or less reliably determined from comparison of the theory and observations. This opens a way to study the spatial structure of interstellar magnetic fields by using multi-wavelength photometric and polarimetric observations.Comment: 11 pages, 4 figures and 4 tables, To appear in MNRAS (added

    Interstellar polarization and grain alignment: the role of iron and silicon

    Full text link
    We compiled the polarimetric data for a sample of lines of sight with known abundances of Mg, Si, and Fe. We correlated the degree of interstellar polarization PP and polarization efficiency (the ratio of PP to the colour excess E(BV)E(B-V) or extinction AVA_V) with dust phase abundances. We detect an anticorrelation between PP and the dust phase abundance of iron in non silicate - containing grains ]_\rm d, a correlation between PP and the abundance of Si, and no correlation between P/E(BV)P/E(B-V) or P/AVP/A_V and dust phase abundances. These findings can be explained if mainly the silicate grains aligned by the radiative mechanism are responsible for the observed interstellar linear polarization.Comment: Accepted for publication in Astronomy and Astrophysic

    Photoelectric Emission from Interstellar Dust: Grain Charging and Gas Heating

    Full text link
    We model the photoelectric emission from and charging of interstellar dust and obtain photoelectric gas heating efficiencies as a function of grain size and the relevant ambient conditions. Using realistic grain size distributions, we evaluate the net gas heating rate for various interstellar environments, and find less heating for dense regions characterized by R_V=5.5 than for diffuse regions with R_V=3.1. We provide fitting functions which reproduce our numerical results for photoelectric heating and recombination cooling for a wide range of interstellar conditions. In a separate paper we will examine the implications of these results for the thermal structure of the interstellar medium. Finally, we investigate the potential importance of photoelectric heating in H II regions, including the warm ionized medium. We find that photoelectric heating could be comparable to or exceed heating due to photoionization of H for high ratios of the radiation intensity to the gas density. We also find that photoelectric heating by dust can account for the observed variation of temperature with distance from the galactic midplane in the warm ionized medium.Comment: 50 pages, including 18 figures; corrected title and abstract field

    AKARI's infrared view on nearby stars : Using AKARI Infrared Camera All-Sky Survey, 2MASS, and Hipparcos catalog

    Full text link
    --Results-- We found that the (B-V) v.s. (V-S9W) color-color diagram is useful to identify the stars with infrared excess emerged from circumstellar envelopes/disks. Be stars with infrared excess are well separated from other types of stars in this diagram. Whereas (J-L18W) v.s. (S9W-L18W) diagram is a powerful tool to classify several object-types. Carbon-rich asymptotic giant branch (AGB) stars and OH/IR stars form distinct sequences in this color-color diagram. Young stellar objects (YSOs), pre-main sequence (PMS) stars, post-AGB stars and planetary nebulae (PNe) have largest mid-infrared color-excess, and can be identified in infrared catalog. Finally, we plot L18W v.s. (S9W-L18W) color-magnitude diagram, using the AKARI data together with Hipparcos parallaxes. This diagram can be used to identify low-mass YSOs, as well as AGB stars. We found that this diagram is comparable to the [24] vs ([8.0]-[24]) diagram of Large Magellanic Cloud sources using the Spitzer Space Telescope data. Our understanding of Galactic objects will be used to interpret color-magnitude diagram of stellar populations in nearby galaxies which Spitzer Space Telescope has observed. --Conclusions-- Our study of the AKARI color-color and color-magnitude will be used to explore properties of unknown objects in future. In addition, our analysis highlights a future key project to understand stellar evolution with circumstellar envelope, once the forthcoming astronometrical data with GAIA are available.Comment: 14 pages, 11 figures, accepted for publication in A&A. High resolution version is available at: http://www.ir.isas.jaxa.jp/%7Eyita/allsky20100302.pdf (26Mb

    Mid-infrared spectral evidence for a luminous dust enshrouded source in Arp220

    Full text link
    We have re-analyzed the 6-12 micron ISO spectrum of the ultra-luminous infrared galaxy Arp220 with the conclusion that it is not consistent with that of a scaled up version of a typical starburst. Instead, both template fitting with spectra of the galaxies NGC4418 and M83 and with dust models suggest that it is best represented by combinations of a typical starburst component, exhibiting PAH emission features, and a heavily absorbed dust continuum which contributes ~40% of the 6-12 micron flux and likely dominates the luminosity. Of particular significance relative to previous studies of Arp220 is the fact that the emission feature at 7.7 micron comprises both PAH emission and a broader component resulting from ice and silicate absorption against a heavily absorbed continuum. Extinction to the PAH emitting source, however, appears to be relatively low. We tentatively associate the PAH emitting and heavily dust/ice absorbed components with the diffuse emission region and the two compact nuclei respectively identified by Soifer et al. (2002) in their higher spatial resolution 10 micron study. Both the similarity of the absorbed continuum with that of the embedded Galactic protostars and results of the dust models imply that the embedded source(s) in Arp220 could be powered by, albeit extremely dense, starburst activity. Due to the high extinction, it is not possible with the available data to exclude that AGN(s) also contribute some or all of the observed luminosity. In this case, however, the upper limit measured for its hard X-ray emission would require Arp220 to be the most highly obscured AGN known.Comment: 11 pages, 9 figures. Accepted for publication in A&A. Also available at http://www.astro.rug.nl/~spoon/publications.htm

    Gas morphology and energetics at the surface of PDRs: new insights with Herschel observations of NGC 7023

    Get PDF
    We investigate the physics and chemistry of the gas and dust in dense photon-dominated regions (PDRs), along with their dependence on the illuminating UV field. Using Herschel-HIFI observations, we study the gas energetics in NGC 7023 in relation to the morphology of this nebula. NGC 7023 is the prototype of a PDR illuminated by a B2V star and is one of the key targets of Herschel. Our approach consists in determining the energetics of the region by combining the information carried by the mid-IR spectrum (extinction by classical grains, emission from very small dust particles) with that of the main gas coolant lines. In this letter, we discuss more specifically the intensity and line profile of the 158 micron (1901 GHz) [CII] line measured by HIFI and provide information on the emitting gas. We show that both the [CII] emission and the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) arise from the regions located in the transition zone between atomic and molecular gas. Using the Meudon PDR code and a simple transfer model, we find good agreement between the calculated and observed [CII] intensities. HIFI observations of NGC 7023 provide the opportunity to constrain the energetics at the surface of PDRs. Future work will include analysis of the main coolant line [OI] and use of a new PDR model that includes PAH-related species.Comment: Accepted for publication in Astronomy and Astrophysics Letters (Herschel HIFI special issue), 5 pages, 5 figure
    corecore