127 research outputs found

    Neural mechanisms underlying probalistic category learning in normal aging.

    Get PDF
    Probabilistic category learning engages neural circuitry that includes the prefrontal cortex and caudate nucleus, two regions that show prominent changes with normal aging. However, the specific contributions of these brain regions are uncertain, and the effects of normal aging have not been examined previously in probabilistic category learning. In the present study, using a blood oxygenation level-dependent functional magnetic resonance imaging block design, 18 healthy young adults (mean age, 25.5 ± 2.6 years) and 15 older adults (mean age, 67.1 ± 5.3 years) were assessed on the probabilistic category learning "weather prediction" test. Whole-brain functional images acquired using a 1.5T scanner (General Electric, Milwaukee, WI) with gradient echo, echo planar imaging (3/1 mm; repetition time, 3000 ms; echo time, 50 ms) were analyzed using second-level random-effects procedures [SPM99 (Statistical Parametric Mapping)]. Young and older adults displayed equivalent probabilistic category learning curves, used similar strategies, and activated analogous neural networks, including the prefrontal and parietal cortices and the caudate nucleus. However, the extent of caudate and prefrontal activation was less and parietal activation was greater in older participants. The percentage correct and reaction time were mainly positively correlated with caudate and prefrontal activation in young individuals but positively correlated with prefrontal and parietal cortices in older individuals. Differential activation within a circumscribed neural network in the context of equivalent learning suggests that some brain regions, such as the parietal cortices, may provide a compensatory mechanism for healthy older adults in the context of deficient prefrontal cortex and caudate nuclei responses. Copyright © 2005 Society for Neuroscience

    Neural correlates of probabilistic category learning in patients with schizophrenia

    Get PDF
    Functional neuroimaging studies of probabilistic category learning in healthy adults report activation of cortical-striatal circuitry. Based on previous findings of normal learning rate concurrent with an overall performance deficit in patients with schizophrenia, we hypothesized that relative to healthy adults, patients with schizophrenia would display preserved caudate nucleus and abnormal prefrontal cortex activation during probabilistic category learning. Forty patients with schizophrenia receiving antipsychotic medication and 25 healthy participants were assessed on interleaved blocks of probabilistic category learning and control tasks while undergoing blood oxygenation level-dependent functional magnetic resonance imaging. In addition to the whole sample of patients with schizophrenia and healthy adults, a subset of patients and healthy adults matched for good learning was also compared. In the whole sample analysis, patients with schizophrenia displayed impaired performance in conjunction with normal learning rate relative to healthy adults. The matched comparison of patients and healthy adults classified as good learners revealed greater caudate and dorsolateral prefrontal cortex activity in the healthy adults and greater activation in a more rostral region of the dorsolateral prefrontal, cingulate, parahippocampal and parietal cortex in patients. These results demonstrate that successful probabilistic category learning can occur in the absence of normal frontal-striatal function. Based on analyses of the patients and healthy adults matched on learning and performance, a minority of patients with schizophrenia achieve successful probabilistic category learning and performance levels through differential activation of a circumscribed neural network which suggests a compensatory mechanism in patients showing successful learning. Copyright © 2009 Society for Neuroscience

    Some investigations into non passive listening

    Get PDF
    Our knowledge of the function of the auditory nervous system is based upon a wealth of data obtained, for the most part, in anaesthetised animals. More recently, it has been generally acknowledged that factors such as attention profoundly modulate the activity of sensory systems and this can take place at many levels of processing. Imaging studies, in particular, have revealed the greater activation of auditory areas and areas outside of sensory processing areas when attending to a stimulus. We present here a brief review of the consequences of such non-passive listening and go on to describe some of the experiments we are conducting to investigate them. In imaging studies, using fMRI, we can demonstrate the activation of attention networks that are non-specific to the sensory modality as well as greater and different activation of the areas of the supra-temporal plane that includes primary and secondary auditory areas. The profuse descending connections of the auditory system seem likely to be part of the mechanisms subserving attention to sound. These are generally thought to be largely inactivated by anaesthesia. However, we have been able to demonstrate that even in an anaesthetised preparation, removing the descending control from the cortex leads to quite profound changes in the temporal patterns of activation by sounds in thalamus and inferior colliculus. Some of these effects seem to be specific to the ear of stimulation and affect interaural processing. To bridge these observations we are developing an awake behaving preparation involving freely moving animals in which it will be possible to investigate the effects of consciousness (by contrasting awake and anaesthetized), passive and active listening

    A longitudinal investigation of repressive coping and ageing

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Aging & Mental Health on October 2016, available online: http://www.tandfonline.com/doi/full/10.1080/13607863.2015.1060941.Two studies investigated the possibility that repressive coping is more prevalent in older adults and that this represents a developmental progression rather than a cohort effect. Study 1 examined repressive coping and mental health cross-sectionally in young and old adults. Study 2 examined whether there was a developmental progression of repressive coping prevalence rates in a longitudinal sample of older adults.Peer reviewedFinal Accepted Versio

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    Effect of initial conditions on the speed of reaction-diffusion fronts

    Get PDF
    The effect of initial conditions on the speed of propagating fronts in reaction-diffusion equations is examined in the framework of the Hamilton-Jacobi theory. We study the transition between quenched and nonquenched fronts both analytically and numerically for parabolic and hyperbolic reaction diffusion. Nonhomogeneous media are also analyzed and the effect of algebraic initial conditions is also discussed

    Primary Invasive Aspergillosis of the Digestive Tract: Report of Two Cases and Review of the Literature

    Get PDF
    BACKGROUND: Disseminated aspergillosis is thought to occur as a result of vascular invasion from the lungs with subsequent bloodstream dissemination, and portals of entry other than sinuses and/or the respiratory tract remain speculative. METHODS: We report two cases of primary aspergillosis in the digestive tract and present a detailed review of eight of the 23 previously-published cases for which detailed data are available. RESULTS AND CONCLUSION: These ten cases presented with symptoms suggestive of typhlitis, with further peritonitis requiring laparotomy and small bowel segmental resection. All cases were characterized by the absence of pulmonary disease at the time of histologically-confirmed gastrointestinal involvement with vascular invasion by branched Aspergillus hyphae. These cases suggest that the digestive tract may represent a portal of entry for Aspergillus species in immunocompromised patients

    Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning

    Get PDF
    Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (N = 53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
    corecore