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Effect of initial conditions on the speed of reaction-diffusion fronts
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The effect of initial conditions on the speed of propagating fronts in reaction-diffusion equations is examined
in the framework of the Hamilton-Jacobi theory. We study the transition between quenched and nonquenched
fronts both analytically and numerically for parabolic and hyperbolic reaction diffusion. Nonhomogeneous
media are also analyzed and the effect of algebraic initial conditions is also discussed.
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[. INTRODUCTION described by PRD equations. We use a WKB transformation
which in the limit x—o andt—o converts the reaction-
Reaction-diffusion equations admit wave-front solutionsdiffusion equation, with KPP kinetics, into a Hamilton-
propagating with their minimum possible speed, providedJacobi equation. Making use of the known solutions for the
that they start from an initial profile with compact support Hamilton-Jacobi equation in the framework of the classical
(compact means different from zero in a finite regidfor a ~ mechanics one can get the position of the front for large
parabolic reaction-diffusioPRD) equation with logistic re- times. This allows us to calculate the asymptotic speed of the
active kinetics, Fisher derived a lower bound for the speed ofront [14]. Following the ideas developed by Freidlin
wave fronts in 19371]. That this bound coincides with their [15,16, we extend the Hamilton-Jacobi formalism in order
exact speed, was proved by Kolmogorov, Petrovskii, ando incorporate the effect of the initial condition, exponential
Piskunov(KPP) [2] also in 1937. Aronson and Weinberger or not, and in consequence we will generalize the results by
showed that the minimal-speed wave is also selected, as lofyonson and Weinberger. For instance, we study the transi-
as the initial condition has compact support, for a large clasgon from quenched to nonquenched fronts for hyperbolic
of reactive kinetics, in several dimensions, and also forreaction-diffusion(HRD) equations starting from an expo-
discrete-time and dispersive-kernel modés 6. nential initial condition. Moreover, we also show that non-
Noncompact initial conditions are also important, but theyquenched fronts may also be obtained from initial conditions
are often ignored in wavefront speed reseaffch a recent decaying slower thae™*, for example, from algebraic ini-
review see Ref[7]). Noncompact initial conditions have ap- tial conditions. We also study how the exponential initial
plications in physics and biologysee, e.g., Ref[8]), be-  condition affects the speed of fronts in heterogenous-media
cause, in general, the profile observed initially may well bePRD equations, where again Mollison’s method does not
closer to a non-compace.g., exponentialfunction thanto a  hold.
compact(e.g., stepone. Mollison[9] showed that from the

initial profile e” “* asx— o, fronts emerge traveling with the Il. THEORETICAL FORMULATION
minimum speed =2 for PRD equationsif « is higher S o N
than a critical valuer* (a* =1 for PRD equations that is, In order to study the implications of the initial conditions

if the initial condition is sufficiently steep. Whea< a* on the speed of fronts, we convert the reaction-diffusion

wave fronts also exist but they travel with a speed that deProblem into a Hamilton-Jacobi equation, which has a well-
pends explicitly on the initial condition through This kind ~ known general solution. In order to do so, we follow the
of fronts are often referred to aguenchedor degenerated Method for large deviations developed by Freidli5,16.
fronts. Mollison developed a method for finding the relation e consider the general problem

between the speed and the initial condition consisting in lin-

earizing the PRD-logistici.e., Fishey equation around the hp(X,1) = F(dup,dxp,dxxp, - - -) T T(p),
unstable statéthus, effectively considering Kendall's equa-
tion) and assuming the profile” **~ "9 asx—o [9]. This p(x,00=g(x), @

method holds only if one takes™ “* as initial condition. For . . )
the PRD logistic(i.e., Fishey equation, some exadRef. where the reactive kinetics ternfi{p), is such thatf(0)
[10] and Sec. 11.4 in Ref11]) and approximatéRef.[12] :/f(l):o, f(P)>P for pe(0,1), f(p) <0 forpe[0,1] and
and Sec. 11.3 in Ref11]) solutions have been found. They f (0)=mMa%<,<if'(p). Then we assume thdi(p) has an
correspond to very specific initial conditions. PRD equationsinstable stateg=0), and a stable ong¢1). The class of
(both logistic and nonlogistichave been considered in Ref. such reaction functlons is caIIe_d KPP_ rgacﬂon tgr_ms. Flrst_ of
[13], where accelerating fronts have been found for initiaj@ll, let us consider a step function as initial condition, that is,
data with sufficiently slow decay. 1 x<0

In this work we will consider compact versus noncompact 90 =0(-x)={ X< )
initial conditions, including more general systems than those 0, x>0.
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The hyperbolic scaling procedure-x/e, t—t/e allows us 1, X<0
to work in the large deviation limit, that is, in the large-scale g(x)= e x>0 @)
and large-time limit wherz—0. Thus the functiorp®(x,t) ’ '
=p(x/e,t/¢) is a solution to the problem whereh(x) is a positive function increasing witk In this

caseG®(x,0)=¢eh(x/e) for x>0 andG*(x,0)=0 for x<O.
The simplest way to generalize E@) in order to incorpo-
e — i rate the effect of the initial condition is by addir@g(x,0)
PrOL0)=O(=X). © and therefore one hag5]
As the system has two equilibrium states, one being stable
and the other one unstable, it is assumed that from initial G(x,t)zmin{sh(y/e)

8(9tp8(xit):f(szﬁttpsv‘gaxpsvszaxxpsv i ')+f(p€)1

conditions the traveling wave(x,t)=#(x—uvt) connects y=0

both states by invading the unstable one for large—0). .

Thus Ilmﬁope(x,t)zw[x—vt/s] and p®(x,t)—0 if x>vt +f L[x(s),p(s)]ds, X(t)zx,x(o):y},
and p®(x,t)—1 if x<vt. Therefore, the solution of Eq3) 0

tends to the step functiofi(vt—x) whene—0, wherev is t

the speed of the front. The zero approximation in &4 for G(x,t)= min[ f L[x(s),p(s)]ds, x(t)=x, X(0)=y] :
£—0 is characterized by the speed only, and not by the y=o| JO

shape of the front which should appear for higher orders. (8)

The problem then is to derive the evolution equation for
the reaction front separating the region whpefe=0 and the In order to sollve Comp'et?'y qu’) one needs to ”.‘a"e use
region wherep®=1. Since p®(x,t)=0 we can make the ©Of the Hamilton equationsx(s)=dH/dp and p(s)=
WKB transformation —dH/dx together with the boundary conditionqt)=x,

‘ x(0)=y.
p®(x,1)=e"C" Ve Go(x1)=0, (4
IIl. EXPONENTIAL INITIAL CONDITIONS
where G®(x,t), which will determine the location of the

front in the limit —0, satisfies One of_ the most studied initial conditions is the decaying
exponential
8,G®+ F(0,G?,04G?,0,G?, 04 G®, . . .)+f(p®)lp°=0.
1, x<0
Sincee ¢ ¢ _,0 ase—0 for G=0, the function 900 = e ¥ x>0. ©
G(x,t)=I1limG?*(x,t)=0 We study in this section how this initial condition affects the
=0 speed of the front fof1) parabolic reaction diffusion(2)

heterogeneous parabolic reaction-diffusion, 48y hyper-

obeys bolic reaction diffusion.

HG+H(4G, ...)=0, (5)
A. Parabolic reaction diffusion
yvhich is the clqssicgl Ha}milton—Jacobi equation correspon_d— Let us study the Fisher-KPP equation,
ing to the reaction-diffusion problem. Analogously to classi-
cal mechanics, herel= —9;G>0 is the Hamiltonian func- dp=dyxp+p(l—p), (10
tion, p=0,G is the conjugated momenta, af(x,t) plays _ N _ _
the role of the action and, therefore, the solution of @is ~ Which under the condition9) has been widely studied
given by the variational prob]em [9,11,1? However, we want to illustrate how the method
presented here yields to the same result. The Hamilton-

, t Jacobi equation corresponding to EG0) is ¢,G+ (3,G)?
G(x,t)zmym[ fOL[x(s),p(s)]ds, X(H)=x,x(0)=ye Sy, +1=0 andH=p?+1. From Eq.(8) one obtains
© (x=y)?

. - iy : G(x,t)=min ay+ —t}, 11
whereS; is the support of the initial condition arldis the y=0 4t
Lagrangian function, as in classical mechanit:?,i((s)p 5
—H andx(s)=dx(s)/ds. Once one get&(x,t), the loca- G(x,t)=min (x=y) i (12)
tion of the front at timet will be given by the equation ' y=ol 4t
G(x,t)=0. Note from Eq.(6) that G(x,0)=0 for g(x)=46
—X). The minimum value in Eq(1l) is attained fory* =x—2at
(=%)

If the initial condition has no compact support or it is not =0 and G(x,t)=ax—t—a?t, which holds only forx
a steplike function, then some generalization to @ymust ~ =2at. The position of the front is ther(t)=(a+ a Ht,
be done[15]. For example, let now the initial condition be which together withx=2at yields the speed=a+a !
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under the restrictiom<<1. When the equality ix=2at
holds one observes that the minimum is attainedyfo 0
and from Eq.(11) or Eq.(12) G(x,t)=(x?/4t)—t, the posi-
tion of the front is given by(t)=2t, the speed is 2 and
=1. On the other hand, the minimum value in Efj2) is

PHYSICAL REVIEW &7, 016213 (2003

B. Heterogeneous parabolic reaction diffusion

We consider now a Fisher-KPP equation, where the het-
erogeneity is present due to the dependence of the reaction
rate on the spatial coordinate. This is important in ecological
applications, because the reproduction rate of many species

attained also foy* =0 and the speed is also 2. Therefore,/aries with latitude, and this will, in turn, affect the speed of

one concludes that

(13

where o* =1. It is interesting to note that the speed is a

-1

continuous function ofx since o+ a™ * reaches the mini-

mum value just fora=1.

their range expansiorf48]. To make the analysis as math-
ematically simple as possible, we consider a linear depen-
dence on the spatial scdléis is also interesting in practice,
because it corresponds to a weakly inhomogenous habitat
Therefore, we start with the problem

p=dxxp+(L+ex)p(1—-p), (19

with the initial condition(9). From the Hamilton equations

We have also explored the case of a Gaussian initial corand taking into account the boundary conditior($) =X,

dition, that is,

h(x)= ax?

in Eq. (7). This initial condition has been used in analyzing

the growth of bacterial colonid8]. Exact analytical results
have also been obtained. From E§),

—\)2
(x=y) _t}

G(x,t)=min ay®+

y=0

4t (14

and fory<0 we have Eq(12). The minimum in Eq{(14) is
attained fory* =x(1+4at) 1, which is always positive and
therefore

ax’—4at?>—t

COMO= 370t

where the position of the front ig(t)=[t(1+4at)/a]*?
Finally, the speed of the front is

1 1+8at sz
s oreet s
2\at 1+ 4at

This means that the speed for aayis always equal to 2,

v(t)=

which has also been checked by numerical simulations. The

x(0)=y we findx(s)=y+ (x—y)/ts+ts—s? and

o (x—y)? 1,
G(X,U—;nzlg ay+ g —t= Sty - 5t
(16)
Gixt) = mi (x—y)? 1 Lol
(X,t)—;llg oty -t (17)

The minimum value in Eq(16) is attained fory* =x—2at
+t=0 and G(x,t)=ax —t—a’t+at?—xt—1t®> which
holds forx=2at—t. The position of the front is

i3
t+ =

X(t)=at+ ——, (18)
a—t

which  together with x=2at—t implies t<a<t

+1+1%/3. Whenx=_2at—t the minimum is attained for
y* =0 andG(x,t) =x?/4t—t— 1tx— 5t2 so that the position
of the front is now given by

2t(3+t?)

J9+3t2°

x(t)=t?+ (19

caseh(x)=ax? also yields the same result: the asymptotic
speed is again=2. This may be understood intuitively be-
cause the initial condition witth(x)=ax" with n>1 is  From the minimum value in Eq17), one has that the posi-
steeper than fon=1, and therefore is closer to the step tion of the front is given again by Eq19). Finally, we can
initial condition. conclude that

( 1
et 1+—82t2) e°t?
L1t 3 st<a<ett\|1+
v(t)={ a—te (a—et)? ' (20)
2te + 2(26%2+3) otherwise
8 _— t
L V9+3e2t?
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FIG. 1. Comparison between analytio@olid curve speeds FIG. 2. Comparison between analytigablid curve$ solution

given by Eq.(20) and those from numerical integrations of the for the speed of fronts in HRD given by E5) and the results of
partial differential equatioridashed curvesfor the temporal evo- numerical simulationgsymbols together with the PRD casea (

lution of the speed of front in heterogeneous PRD given in(E5. ~ —0). For HRD equations we took=0.4, so thata™ =2.33 for
We have takers=0.01 ande™ ®* for x—. We have employed Y=a anda*=1.61 for y=0. In this plot, the initial condition is
dimensionless variables. given by Eq.(9) and we have employed dimensionless variables.
once th_e hyperbolic scaling is inverted. In Fig. 1 we show the G(x,t)=min| ay+ Vt

comparison between Eq20) and the speed of fronts ob- y=0 2a

tained from numerical integrations of E@.5) together with

Eqg. (9). We observe that, for several valuessgfthere is a J(1—y)?+4a x—y\?

good agreement. For some initial conditions, the speed of the - 2a tyl-a t '

front increases with time, but for the initial condition in Eq.

(9) with large values ofx, that is, for steep enough initial
conditions, the growth is damped by the effect of the initial G
condition.

2a t 2a

(x,t)=min
y<0

_ _ 2
1-a _\/(1 ) +4at\/l—a

=

(22

C. Hyperbolic reaction diffusion . L . -
P From the first equation in E¢22) we find that the minimum

(HRD) equations have been recently applied in biophysicss attained fory* =x— 2ta[(1— v)2+4a(1+a?)] Y2 and
to model the spread of humaf9], viruses[ 20], forest fires

[21], in population dynamic$22] and combustion flames 1— ¢
[23]. The main property of these equations is that they incor-  G(x,t)=ax+ Y —[(1—y)?+4a(1+a?®]*?
a

porate a delay or memory which is important in many appli- 2 2a
cations. However, there are two kind of such equations fre- (23
quently used in literature. In general, both may be written
under the form which holds only for x=2ta[(1— y)2+4a(1+a?)] Y2
This condition, together with the position of the front coming
adyp+[1—yt'(p)]dp=dxp+f(p), (21)  from Eq.(293), is equivalent tax<a*, where
[ 2
wheref’(p) stands fordf/dp and the parametey may be o* _VA=y)"+4a
equal toa [19,21-23 or 0 [24—26. The Hamilton-Jacobi 1=y
associated with Eq(21) is a(d,G)?— (1— )G — (3,G)?
—1=0 and the Hamiltonian is which needsy<1 in order to guarantee the positivity of

For x<2ta[(1— y)?+4a(1+a?)] 2 the minimum is at-
tained fory* =0 and

1-v 1
H=———+ >=J(1-y)*+4a(l+p?.
2a 2a l-a 1+a X
G(xt)= 5 —t=——t\/1-aly

2a 2a t (24

From the Hamilton equations we fing(s)=[(x—Yy)/ts
+vy] and from Eq.(8) we have Finally, one has
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1
Ew(l— y)?+4a(l+a®)—1+y], asa*

2

T yraa

a=a*.

(25

°
We observe thai is also a continuous function of where it o
depends explicitly ore, which represents the quotient be- o
tween the delay time and the reproduction characteristic time
[27].

In Fig. 2 we plot Egs.(13) and (25 for the casesy
=0,a together with the numerical simulations. The effect of
the delay is clear: it reduces the speed of propagation relative . . . . _ . . .
to the parabolic case. The first part of the result given in Eqg. 04 06 08 10 12 14 16 18 20
(25 has been recently derived in R4R8] by using the o
method proposed by Mollisof®].

FIG. 3. Comparison of the speed of fronts for PRD equations
with the frontlike initial condition given in Eq(26). Circles are
numerical solutions and solid curves correspond to the solution of

Initial conditions different from that studied above may Ed- (29). We have computed the speed fo3,1,2 and we have
also be Cons|dered |n the Ham||ton_Jacob| formula‘“on, as W@bserved that fob |arge the Speed is closer to 2. This is due to the
show in this and in the following sections. We propose nowfact that the initial condition is steeper, the higher the valub isf

IV. FRONTLIKE INITIAL CONDITION

to study the frontlike initial condition We have employed dimensionless variables.
1, x<0 wherey* is the solution of Eq(28) anda™* =2/b. In order to
b compute the position of the front and the speeddet2/b
9(x)= 2 x>0 (260 we must solve numericallz(x,t)=0 for the first of the
1+ e equations in Eq(29) obtainingy* and substituting into Eq.

(28) to find the corresponding(t). The speed may be cal-
with « and b positive definite constants for parabolic culated easily from the slope &ft) versust. For a=2/b the
reaction-diffusion equatiorf10). In this case it is easy to speed is 2. Fig. 3 displays this semianalytic result, as well as
identify h(x/e)=sIn(1+e¥®) and from Eq.(8) we have that obtained from numerical simulations of E@.0) to-
gether with Eq.(26). There is a very good agreement.

_ 1+e®) (x—y)?
G(x,t)=min bln + —t|,
y=0 2 4t V. ALGEBRAIC INITIAL CONDITIONS
(x—y)? In this case the technical difficulties to solve the problem
G(x,t)=min —t}, (270  analytically are the same as before. Algebraic initial condi-
y=ol 4t tions may be represented in a general form as
once the hyperbolic scaling is inverted. For the first of the 1, x<0
equations in Eq(27) the minimum is attained foy*>0
such that it fulfills the following transcendent equation 9=y 1 x>0. 30
. (1+x)
eay B x—y*
ab1+eay* T2t (28 From Eq.(8)
_\v\2
Equation (28) has one and only one solutioy* positive G(x,t)=min aIn(1+y)+ (x=y) —t}
defined provided that= abt. For x=abt the minimum is " y=o at ’
attained fory* =0 as one can see from both equations in Eq.
(27) and the position of the front is the classicdt) =2t [(x—y)?
which holds fora<a*. Whence G(x,t)=min — ——t|. (32)
y=<0
ay* 2ay*
G(x,t)=bln +tb2a2—*2—tfor a<a*, The minimum value for the function in brackets for the first
2 (1+e?") of equations(31) is reached fory*=0 or y*=[x—1
5 +(x+1)?—8at]/2. The position of the front must be cal-
X culated by replacing in the first equation of Eq(31) by
= — — = *
G 4t t for a=a”, (29 [x—1+(x+1)’2—8at]/2. From the second one it is
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reached only foy* =0 and the position of the front is(t) lem for algebraic and frontlike initial conditions. This ex-
=2t. We have checked the position of the front for any timetends the results by Aronson and Weinberger. We have also
for different values ofx. We have observed that the slope is dealt with the effect of the initial conditions on the speed of
for large times independently ef and it is equal to 2. This front in PRD equations when spatial heterogeneities are
may be also understood from simple qualitative argumentsresent. We have found agreement between analytical and
If we expect fronts traveling with constant speed for largenumerical calculations for all the situations studied. Our
times then the position of the front grows likandy*, if it work shows that also nonexponential initial profiles affect
is different from 0, grows also liké. In consequence, In(1 the speed of fronts.
+y*)~In(t) and from the first equation in E¢31) G(x,t) There remain some interesting open questions. On the
~(x—y*)?/4t—t. TakingG(x,t)=0 one has =2. Whence theoretical side, it would be interesting to see the effect of a
one can conclude that for any value @fthe speed of front cutoff in the reaction rate, which has been proposed in order
starting from Eq.(30) reaches a speed equal to 2 for suffi- to take into account the discretness of reaction-diffusion sys-
ciently large times. This argument is supported also by nutems at the microscopic scdl29,30 and may be important
merical simulations, which we have performed directly fromin the study of bacterial colonig81]. On the experimental
Egs.(10) and(30). side, our work may be useful in bacterial coloni8$and the
spread of virus infectiong20] since, in both cases, the con-

V1. CONCLUSIONS centration profile may be measured experimentally.

We have made use of Hamilton-Jacobi theory to study the
effect of the initial conditions on the speed of reaction-
diffusion fronts with KPP kinetics. The Hamilton-Jacobi  Computing equipment used was funded in part by the
framework has allowed us to investigate the transition beGeneralitat de Catalunya under Grant No. SGR-2001-00186
tween quenched and nonguenched fronts both for PRD an@.M. and J.F, and by the Ministry of Science and Technol-
HRD equations. Contrarily to the method by Mollinson ogy under Grant Nos. BFM 2000-03%V¥.M. and J.F and
[9,11], our approach has made it possible to solve the probREN 2000-1621 CLKJ.F. and T.B.
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