7 research outputs found

    Increased power by harmonizing structural MRI site differences with the ComBat batch method in ENIGMA

    Get PDF
    A common limitation of neuroimaging studies is their small sample sizes. To overcome this hurdle, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium combines neuroimaging data from many institutions worldwide. However, this introduces heterogeneity due to different scanning devices and sequences. ENIGMA projects commonly address this heterogeneity with random-effects meta-analysis or mixed-effects mega -analysis. Here we tested whether the batch adjustment method, ComBat, can further reduce site-related het-erogeneity and thus increase statistical power. We conducted random-effects meta-analyses, mixed-effects mega -analyses and ComBat mega-analyses to compare cortical thickness, surface area and subcortical volumes between 2897 individuals with a diagnosis of schizophrenia and 3141 healthy controls from 33 sites. Specifically, we compared the imaging data between individuals with schizophrenia and healthy controls, covarying for age and sex. The use of ComBat substantially increased the statistical significance of the findings as compared to random - effects meta-analyses. The findings were more similar when comparing ComBat with mixed-effects mega-analysis, although ComBat still slightly increased the statistical significance. ComBat also showed increased statistical power when we repeated the analyses with fewer sites. Results were nearly identical when we applied the ComBat harmonization separately for cortical thickness, cortical surface area and subcortical volumes. Therefore, we recommend applying the ComBat function to attenuate potential effects of site in ENIGMA projects and other multi-site structural imaging work. We provide easy-to-use functions in R that work even if imaging data are partially missing in some brain regions, and they can be trained with one data set and then applied to another (a requirement for some analyses such as machine learning)

    A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium

    No full text
    Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia

    Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA

    No full text
    Altres ajuts: SRB: The Australian Schizophrenia Research Bank (ASRB) was supported by the National Health and Medical Research Council of Australia (NHMRC) (Enabling Grant, ID 386500), the Pratt Foundation, Ramsay Health Care, the Viertel Charitable Foundation and the Schizophrenia Research Institute. Chief Investigators for ASRB were Carr, V., Schall, U., Scott, R., Jablensky, A., Mowry, B., Michie, P., Catts, S., Henskens, F., Pantelis, C. We thank Loughland, C., the ASRB Manager, and acknowledge the help of Jason Bridge for ASRB database queries. CP was supported by NHMRC Senior Principal Research Fellowships (IDs: 628386 & 1105825); GC was supported by the Schizophrenia Research Institute utilizing infrastructure funding from the New South Wales Ministry of Health and New South Wales Ministry of Trade and Investment (Australia); JMF was supported by NHMRC project grant (1063960) and the Janette Mary O'Neil Research Fellowship; MJG was supported by NHMRC as an R.D. Wright Biomedical Career Development Fellow (1061875). MJC was supported by NHMRC Senior Research Fellowship (1121474). CASSI: CSW is funded by the NSW Ministry of Health, Office of Health and Medical Research. CSW is a recipient of a National Health and Medical Research Council (Australia) Principal Research Fellowship (PRF) (#1117079). CIAM: The CIAM study (FMH - PI) was supported by the University Research Committee, University of Cape Town and South African funding bodies National Research Foundation and Medical Research Council. COBRE: The COBRE dataset and investigators were supported by NIH grants R01EB006841 & P20GM103472, as well as NSF grant 1539067. JT (senior author) and VDC are supported by 5R01MH094524. JMS is supported by R01 AA021771 and P50 AA022534. EONCKS: This work was supported by a New Partnership for Africa's Development (NEPAD) grant through the Department of Science and Technology of South Africa, the Medical Research Council of South Africa (grant number 65174). ESO: The ESO study was funded by NPU I - LO1611 and Ministry of Health, Czech Republic - Conceptual Development of Research Organization 00023001 (IKEM). FIDMAG/Project: This work was supported by the Catalan Government and several grants from the Instituto de Salud Carlos III and co-funded by European Union (ERDF/ESF, 'Investing in your future'): Miguel Servet Research Contracts and Research Project Grants. FOR2107 Marburg: The FOR2107 Marburg study was funded by the German Research Foundation (DFG), Tilo Kircher (speaker FOR2107; DFG grant numbers KI588/14-1, KI588/14-2), Axel Krug (KR 3822/5-1, KR 3822/7-2), Igor Nenadic (NE 2254/1-2), Carsten Konrad (KO 4291/3-1). FOR2107 Muenster: The FOR2107 Muenster study was funded by the German Research Foundation (DFG, grant FOR2107 DA1151/5-1 and DA1151/5-2 to UD) and the Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (grant Dan3/012/17 to UD). TH was supported by grants from the German Research Foundation (DFG grants HA7070/2-2, HA7070/3, HA7070/4). Frankfurt: MRI was performed at the Frankfurt Brain Imaging Center, supported by the German Research Council (DFG) and the German Ministry for Education and Research (BMBF; Brain Imaging Center Frankfurt/Main, DLR 01GO0203). GIPSI: This study was supported by Colciencias PRISMA-U.T. Huilong1 & Huilong2: This study was funded by the National Natural Science Foundation of China (81761128021; 31671145; 81401115; 81401133), Beijing Municipal Science and Technology Commission grant (Z141107002514016) and Beijing Natural Science Foundation(7162087, Beijing Municipal Administration of Hospitals Clinical medicine Development of special funding (XMLX201609; zylx201409). IGP: This study was funded by Project Grants from the Australian National Health and Medical Research Council of Australia (NHMRC; APP630471 and APP1081603), the Macquarie University's Australian Research Council Centre of Excellence in Cognition and its Disorders (CE110001021). Johns Hopkins: Supported by National Institutes of Health Grant Nos. MH-092443, MH-094268 (Silvio O. Conte Center), MH-105660, and MH-107730; foundation grants from Stanley, RUSK/S-R, and NARSAD/Brain and Behavior Research Foundation. Madrid: Supported by the Spanish Ministry of Science, Innovation and Universities, Instituto de Salud Carlos III, co-financed by ERDF Funds from the European Commission, "A way of making Europe", CIBERSAM. Madrid Regional Government (B2017/BMD-3740 AGES-CM-2), European Union Structural Funds and European Union Seventh Framework Program and H2020 Program; Fundación Familia Alonso, Fundación Alicia Koplowitz and Fundación Mutua Madrileña. MPRC1 & MPRC2: Support was received from NIH grants U01MH108148, 2R01EB015611, R01MH112180, R01DA027680, R01MH085646, P50MH103222 and T32MH067533, a State of Maryland contract (M00B6400091) and NSF grant (1620457). OLIN: The Olin study was supported by NIH grants R37MH43375 and R01MH074797. Oxford: The Oxford study MRC G0500092. SLF Rome: Support from the Italian Ministry of Health grants RC-12-13-14-15-16-17-18-19/A. RSCZ: RSCZ data collection was supported by RFBR 15-06-05758 grant. SCORE: This study was supported in part by grant 3232BO_119382 from the Swiss National Science Foundation. We thank the FePsy (Frueherkennung von Psychosen; early detection of psychosis) Study Group from the University of Basel, Department of Psychiatry, Switzerland, for the recruitment of the study participants. The FePsy Study was supported in part by grant No. SNF 3200-057216/1, ext./2, ext./3. Singapore: This study was supported by research grants from the National Healthcare Group, Singapore (SIG/05004; SIG/11003), and the Singapore Bioimaging Consortium (RP C-009/2006) research grants awarded to KS. SNUH: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant no. 2013R1A2A1A03071089 and 2017M3C7A1029610). UCISZ: The UCISZ study was supported by the National Institutes of Mental Health grant number R21MH097196 to TGMvE. UCISZ data were processed by the UCI High Performance Computing cluster supported by Joseph Farran, Harry Mangalam, and Adam Brenner and the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant UL1 TR000153. UNIBA: The UNIBA study was supported by grant funding from the Italian Ministry of Health (PE-2011-02347951). UNIMAAS: The study was supported by Dutch Organization for Health Research and Development (ZonMw 91112002) and a personal grant to Thérèse van Amelsvoort (ZonMw-VIDI: 91712394). The data was collected in a clinical trial registered in the Dutch clinical trial registry under ID: NTR5094 (http://www.trialregister.nl). UPenn: This study was supported by the National Institute of Mental Health grants MH064045, MH 60722, MH019112, MH085096 (DHW), and R01MH112847 (RTS and TDS). Zurich: This study was supported by the Swiss National Science Foundation (105314_140351 to S.K.). Matthias Kirschner acknowledges support from the National Bank Fellowship (McGill University) and the Swiss National Foundation (P2SKP3_178175). Research reported in this publication was also supported by the following National Institutes of Health grants: U54 EB020403 to PMT, R01 MH116147, U24 RR21992, R21MH097196, and TR000153 to TGMvE, S10 OD023696 and R01EB015611 to PK, T32 AG058507and 5T32 MH073526 to CRKC, R01 MH117601 to NJ, ENIGMA's NIH Big Data to Knowledge (BD2K) initiative U54 EB020403, ENIGMA Sex Differences R01MH116147, and ENIGMA-COINSTAC: Advanced World-wide Transdiagnostic Analysis of Valence System Brain Circuits R01MH121246.A common limitation of neuroimaging studies is their small sample sizes. To overcome this hurdle, the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium combines neuroimaging data from many institutions worldwide. However, this introduces heterogeneity due to different scanning devices and sequences. ENIGMA projects commonly address this heterogeneity with random-effects meta-analysis or mixed-effects mega-analysis. Here we tested whether the batch adjustment method, ComBat, can further reduce site-related heterogeneity and thus increase statistical power. We conducted random-effects meta-analyses, mixed-effects mega-analyses and ComBat mega-analyses to compare cortical thickness, surface area and subcortical volumes between 2897 individuals with a diagnosis of schizophrenia and 3141 healthy controls from 33 sites. Specifically, we compared the imaging data between individuals with schizophrenia and healthy controls, covarying for age and sex. The use of ComBat substantially increased the statistical significance of the findings as compared to random-effects meta-analyses. The findings were more similar when comparing ComBat with mixed-effects mega-analysis, although ComBat still slightly increased the statistical significance. ComBat also showed increased statistical power when we repeated the analyses with fewer sites. Results were nearly identical when we applied the ComBat harmonization separately for cortical thickness, cortical surface area and subcortical volumes. Therefore, we recommend applying the ComBat function to attenuate potential effects of site in ENIGMA projects and other multi-site structural imaging work. We provide easy-to-use functions in R that work even if imaging data are partially missing in some brain regions, and they can be trained with one data set and then applied to another (a requirement for some analyses such as machine learning)

    Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders

    Get PDF
    Importance Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood. Objective To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. Design, Setting, and Participants Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244. Main Outcomes and Measures Interregional profiles of group difference in cortical thickness between cases and controls. Results A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders. Conclusions and Relevance In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders

    Global COVID-19 lockdown highlights humans as both threats and custodians of the environment

    Get PDF
    The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness

    Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA

    No full text
    corecore