133 research outputs found

    Market structure and the value of overselling under stochastic demands

    Get PDF
    In the operations management literature, traditional revenue management focused on pricing and capacity allocation strategies in a two-period model with stochastic demand. Inspired by travel and lodging industries, we examine a two-period model in which each seller may also adopt the overselling strategy to customers whose valuations are differentiated by timing of arrivals. Widely seen as a popular hedge against consumers’ skipping reservations, we extend the stylized approaches of Biyalogorsky, Carmon, Fruchter, and Gerstner (1999) and Lim (2009) to understand the value of overselling under various market structures. We find that contrary to existing literature, the impact of period-two pricing competition from overselling spills over to period-one such that overselling may not always be a (weakly) dominant strategy once unlimited early demand ceases to hold in a duopoly regime. We provide some numerical studies on the existence of multiple equilibria at the capacity allocation level which actually lead to different selling strategies at the equilibrium despite identical market conditions and firm characteristics

    A simple, rapid method to isolate salt glands for three-dimensional visualization, fluorescence imaging and cytological studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some plants inhabiting saline environment remove salts via the salt glands embedded in the epidermal tissues. Cytological studies of salt glands will provide valuable information to our understanding of the secretory process. Previous studies on salt gland histology relied mainly on two-dimensional microscopic observations of microtome sections. Optical sectioning properties of confocal laser scanning microscope offer alternative approach for obtaining three-dimensional structural information of salt glands. Difficulty in light penetration through intact leaves and interference from neighbouring leaf cells, however, impede the acquiring of good optical salt gland sections and limit its applications in salt gland imaging. Freeing the glands from adjacent leaf tissues will allow better manipulations for three-dimensional imaging through confocal laser scanning microscopy.</p> <p>Results</p> <p>Here, we present a simple and fast method for the isolation of individual salt glands released from the interference of neighbouring cells. About 100-200 salt glands could be isolated from just one cm<sup>2 </sup>of <it>Avicennia </it><it>officinalis </it>leaf within hours and microscopic visualization of isolated salt glands was made possible within a day. Using these isolated glands, confocal laser scanning microscopic techniques could be applied and better resolution salt gland images could be achieved. By making use of their intrinsic fluorescent properties, optical sections of the gland cells could be acquired without the use of fluorescent probes and the corresponding three-dimensional images constructed. Useful cytological information of the salt gland cells could also be obtained through the applications of fluorescent dyes (e.g., LysoTracker<sup>® </sup>Red, FM<sup>®</sup>4-64, Texas Red<sup>®</sup>).</p> <p>Conclusions</p> <p>The study of salt glands directly at the glandular level are made possible with the successful isolation of these specialized structures. Preparation of materials for subsequent microscopic observations of salt glands could be achieved within a day. Potential applications of confocal fluorescence microscopic techniques could also be performed using these isolated glands. Experiments designed and targeted directly at the salt glands were explored and cytological information obtained herein could be further incorporated towards the understanding of the mechanism underlying secretion in plant salt glands.</p

    iProgVR: Design of a Virtual Reality Environment to Improve Introductory Programming Learning

    Get PDF
    Currently, there are a plethora of solutions developed to help students learn the basics of programming. However, there is a relative paucity of solutions that cater to problems students face when learning programming that is mainly caused by the abstract nature of programming, misconceptions of programming concepts, and lack of motivation. Hence, in this study, a framework to address the abstract nature of programming and common programming misconceptions is developed. The framework consists of three modules that correspond to each issue, powered by a simulation engine. The first module is developed to address the abstract nature of programming by representing programming concepts with concrete objects in the virtual environment. The second module employs simulation techniques such as interactions and player perspectives to address common programming misconceptions. Lastly, the third module employs elements in the virtual environment to engage students when learning through the system. To evaluate the system, 60 participants were randomly divided into the control group (N = 30) and the experimental group (N = 30). Participants in the control group were taught using a video lecture while participants in the experimental group were taught using the developed VR intervention. Evaluation results gathered quantitatively indicated that the VR intervention was able to significantly increase programming concepts comprehension and address programming misconceptions. Participants also rated the developed VR intervention to be significantly more engaging than the video lecture

    Haptic Interfaces for Virtual Reality: Challenges and Research Directions

    Get PDF
    The sense of touch (haptics) has been applied in several areas such as tele-haptics, telemedicine, training, education, and entertainment. As of today, haptics is used and explored by researchers in many more multi-disciplinary and inter-disciplinary areas. The utilization of haptics is also enhanced with other forms of media such as audio, video, and even sense of smell. For example, the use of haptics is prevalent in virtual reality environments to increase the immersive experience for users. However, while there has been significant progress within haptic interfaces throughout the years, there are still many challenges that limit their development. This review highlights haptic interfaces for virtual reality ranging from wearables, handhelds, encountered-type devices, and props, to mid-air approaches. We discuss and summarize these approaches, along with interaction domains such as skin receptors, object properties, and force. This is in order to arrive at design challenges for each interface, along with existing research gaps

    A Machine Learning Approach to Predicting Single Event Upsets

    Full text link
    A single event upset (SEU) is a critical soft error that occurs in semiconductor devices on exposure to ionising particles from space environments. SEUs cause bit flips in the memory component of semiconductors. This creates a multitude of safety hazards as stored information becomes less reliable. Currently, SEUs are only detected several hours after their occurrence. CREMER, the model presented in this paper, predicts SEUs in advance using machine learning. CREMER uses only positional data to predict SEU occurrence, making it robust, inexpensive and scalable. Upon implementation, the improved reliability of memory devices will create a digitally safer environment onboard space vehicles

    A Systematic Review of Weight Perception in Virtual Reality: Techniques, Challenges, and Road Ahead

    Get PDF
    Weight is perceived through the combination of multiple sensory systems, and a wide range of factors – including touch, visual, and force senses – can influence the perception of heaviness. There have been remarkable advancements in the development of haptic interfaces throughout the years. However, a number of challenges limit the progression to enable humans to sense the weight in virtual reality (VR). This article presents an overview of the factors that influence how weight is perceived and the phenomenon that contributes to various types of weight illusions. A systematic review has been undertaken to assess the development of weight perception in VR, underlying haptic technology that renders the mass of a virtual object, and the creation of weight perception through pseudo-haptic. We summarize the approaches from the perspective of haptic and pseudo-haptic cues that exhibit the sense of weight such as force, skin deformation, vibration, inertia, control–display ratio, velocity, body gestures, and audio–visual representation. The design challenges are underlined, and research gaps are discussed, including accuracy and precision, weight discrimination, heavyweight rendering, and absolute weight simulation. This article is anticipated to aid in the development of more realistic weight perception in VR and stimulated new research interest in this topic

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    ROLE OF WNK SIGNALING IN NEUROGENESIS AND NEUROPATHOGENESIS

    No full text
    Ph.DDOCTOR OF PHILOSOPH

    ENTREPRENEURIAL APPROACH TO PROPERTY MANAGEMENT

    No full text
    Bachelor'sBACHELOR OF SCIENCE (ESTATE MANAGEMENT
    corecore