301 research outputs found

    An Iterative Detection Aided Unequal Error Protection Wavelet Video Scheme Using Irregular Convolutional Codes

    No full text
    A wavelet-based videophone scheme proposed, where the video bits are Unequal Error Protection (UEP) using Irregular Convolutional Codes (IRCCs). The proposed system uses Adaptive Arithmetic Coding (AAC) for encoding the motion vectors and individual wavelet subband coefficients. The turbo equalized IRCC-aided videophone scheme is capable of attaining a near unimpaired video quality for channel Signal-to-Noise Ratios (SNRs) in excess of about 4.5dB over a five-path dispersive AWGN channel

    Comparative Assessment of the Binding and Neutralisation Activity of Bispecific Antibodies Against SARS-CoV-2 Variants.

    Get PDF
    Neutralising antibodies against SARS-CoV-2 are a vital component in the fight against COVID-19 pandemic, having the potential of both therapeutic and prophylactic applications. Bispecific antibodies (BsAbs) against SARS-CoV-2 are particularly promising, given their ability to bind simultaneously to two distinct sites of the receptor-binding domain (RBD) of the viral spike protein. Such antibodies are complex molecules associated with multi-faceted mechanisms of action that require appropriate bioassays to ensure product quality and manufacturing consistency. We developed procedures for biolayer interferometry (BLI) and a cell-based virus neutralisation assay, the focus reduction neutralisation test (FRNT). Using both assays, we tested a panel of five BsAbs against different spike variants (Ancestral, Delta and Omicron) to evaluate the use of these analytical methods in assessing binding and neutralisation activities of anti-SARS-CoV-2 therapeutics. We found comparable trends between BLI-derived binding affinity and FRNT-based virus neutralisation activity. Antibodies that displayed high binding affinity against a variant were often followed by potent neutralisation at lower concentrations, whereas those with low binding affinity also demonstrated reduced neutralisation activity. The results support the utility of BLI and FRNT assays in measuring variant-specific binding and virus neutralisation activity of anti-SARS-CoV-2 antibodies

    Co-activation of NF-κB and MYC renders cancer cells addicted to IL6 for survival and phenotypic stability

    Get PDF
    NF-κB and MYC are found co-deregulated in human B and plasma-cell cancers. In physiology, NF-κB is necessary for terminal B-to-plasma cell differentiation, whereas MYC repression is required. It is thus unclear if NF-κB/MYC co-deregulation is developmentally compatible in carcinogenesis and/or impacts cancer cell differentiation state, possibly uncovering unique sensitivities. Using a mouse system to trace cell lineage and oncogene activation we found that NF-κB/MYC co-deregulation originated cancers with a plasmablast-like phenotype, alike human plasmablastic-lymphoma and was linked to t(8;14)[MYC-IGH] multiple myeloma. Notably, in contrast to NF-κB or MYC activation alone, co-deregulation rendered cells addicted to IL6 for survival and phenotypic stability. We propose that conflicting oncogene-driven differentiation pressures can be accommodated at a cost in poorly-differentiated cancers. SIGNIFICANCE: Our studies improve the understanding of cancer pathogenesis by demonstrating that co-deregulation of NF-κB and MYC synergize in forming a cancer with a poorly-differentiated state. The cancers in the mouse system share features with human Plasmablastic lymphoma that has a dismal prognosis and no standard of care, and with t(8;14)[MYC-IGH] Multiple myeloma, which is in overall resistant to standard therapy. Notably, we found that NF-κB and MYC co-deregulation uniquely render cells sensitive to IL6 deprivation, providing a road-map for patient selection. Because of the similarity of the cancers arising in the compound mutant mouse model with that of human Plasmablastic lymphoma and t(8;14)[MYC-IGH] Multiple myeloma, this model could serve in preclinical testing to investigate novel therapies for these hard-to-treat diseases

    Why decision support systems are important for medical education

    Get PDF
    During the last decades the inclusion of digital tools in health education has rapidly lead to a continuously enlarging digital era. All the online interactions between learners and tutors, the description, creation, reuse and sharing of educational digital resources and the interlinkage between them in conjunction with cheap storage technology has led to an enormous amount of educational data. Medical education is a unique type of education due to accuracy of information needed, continuous changing competences required and alternative methods of education used. Nowadays medical education standards provide the ground for organizing the educational data and the paradata. Analysis of such education data through education data mining techniques is in its infancy, but decision support systems for medical education need further research. To the best of our knowledge, there is a gap and a clear need for identifying the challenges for decision support systems in medical education in the era of medical education standards. Thus, in this paper the role and the attributes of such a decision support system for medical education are delineated and the challenges and vision for future actions are identified

    Metadevice of three dimensional split ring resonators

    No full text
    Split-ring resonator (SRR), a kind of building block for metamaterial unit cell, has attracted wide attentions due to the resonance excitation of electric and magnetic dipolar response. Here, different from prior published lectures, fundamental plasmon properties and potential applications in novel three dimensional vertical split-ring resonators (VSRRs ) are designed and investigated. The resonant properties arose from the electric and magnetic interactions between the VSRR s and light are firstly theoretically and experimentally studied (Fig. 1(a)). Tuning the configuration of VSRR unit cells is able to generate various novel coupling phenomena in VSRRs, such as plasmon hybridization and Fano resonance, as shown in Figs. 1(b) and 1(c) . Subsequently, the VSRR-based refractive-index sensor will be demonstrated. Due to the unique structural configuration, the enhanced plasmon fields localized in VSRR gaps can be lifted off from the dielectric substrate, allowing for the increase of sensing volume and enhancing the sensitivity (Fig. 1(d)) . We further perform a VSRR based metasurface for light manipulation in optical communication frequency, as shown in Fig. 1(e). Moreover, isotropic VSRRs are approached by optimizing the structural arrangement within a unit cell (Fig. 1(f)). Figure 1(g) shows the schematic for isotropic VSRR-based perfect absorber. By incorporating a metallic mirror with isotropic VSRRs, a stronger field confinement happens to enhance the absorption ability, benefitting the development of refractive index sensor. Finally, a transverse toroidal moment generated by normal incident optical wave at gold dumbbell-shaped aperture and a VSRR is designed and experimentally demonstrated , as shown in Fig. 1(h)

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for the associated production of the Higgs boson with a top-quark pair

    Get PDF
    A search for the standard model Higgs boson produced in association with a top-quark pair t t ¯ H (tt¯H) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb −1 and 19.7 fb −1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. The results are characterized by an observed t t ¯ H tt¯H signal strength relative to the standard model cross section, μ = σ/σ SM ,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is μ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV

    Measurement of prompt Jψ\psi pair production in pp collisions at \sqrt s = 7 Tev

    Get PDF
    Production of prompt J/ ψ meson pairs in proton-proton collisions at s s√ = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb −1 . The two J/ ψ mesons are fully reconstructed via their decays into μ + μ − pairs. This observation provides for the first time access to the high-transverse-momentum region of J/ ψ pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/ ψ transverse momentum ( p T J/ ψ ) and rapidity (| y J/ ψ |): | y J/ ψ | 6.5 GeV/ c ; 1.2 4.5 GeV/ c . The total cross section, assuming unpolarized prompt J/ ψ pair production is 1.49 ± 0.07 (stat) ±0.13 (syst) nb. Different assumptions about the J/ ψ polarization imply modifications to the cross section ranging from −31% to +27%

    Measurements of the t(t)Overbar charge asymmetry using the dilepton decay channel in pp collisions at root s=7 TeV

    Get PDF
    The tt¯ charge asymmetry in proton-proton collisions at s√ = 7 TeV is measured using the dilepton decay channel (ee, e μ , or μμ ). The data correspond to a total integrated luminosity of 5.0 fb −1 , collected by the CMS experiment at the LHC. The tt and lepton charge asymmetries, defined as the differences in absolute values of the rapidities between the reconstructed top quarks and antiquarks and of the pseudorapidities between the positive and negative leptons, respectively, are measured to be A C = −0 . 010 ± 0 . 017 (stat . ) ± 0 . 008 (syst . ) and AlepC = 0 . 009 ± 0 . 010 (stat . ) ± 0 . 006 (syst . ). The lepton charge asymmetry is also measured as a function of the invariant mass, rapidity, and transverse momentum of the tt¯ system. All measurements are consistent with the expectations of the standard model
    corecore