118 research outputs found

    HPLC-MS with an Ion Trap Mass Spectrometer

    Get PDF
    Ion traps have become an important and powerful tool in many fields of analytical chemistry. The immanent sensitivity of the device and the ability to perform MSn opens a wide variety of experimental setups even at very low sample concentration levels. Modern and intelligent instrument control is of particular importance. The spread of ion trap mass spectrometry will greatly enhance the amount of data generated by LC-MS laboratories. The ability to handle and screen the flood of information puts high demands on companies and research facilities to keep pace with these developments

    Effect of electromagnetic fields on human osteoarthritic and non-osteoarthritic chondrocytes

    Get PDF
    Background: Studies of the effects of electromagnetic fields (EMFs) on cartilaginous cells show a broad range of outcomes. However EMFs are not yet clinically applied as standard treatment of osteoarthritis, as EMF effects are showing varying outcomes in the literature. The aim of this study was to examine effects of EMFs (5 mT or 8 mT) on osteoarthritic (OA) and non-OA chondrocytes in order to investigate whether EMF effects are related to chondrocyte and EMF quality. Methods: Pellets of human OA and non-OA chondrocytes were exposed to a sinusoidal 15 Hz EMF produced by a solenoid. Control groups were cultivated without EMF under standard conditions for 7 days. Cultures were examined by staining, immunohistochemistry and quantitative real-time PCR for RNA corresponding to cartilage specific proteins (COL2A1, ACAN, SOX9). Results: OA chondrocytes increased the expression of COL2A1 and ACAN under 5 mT EMF compared to control. In contrast no changes in gene expression were observed in non-OA chondrocytes. OA and non-OA chondrocytes showed no significant changes in gene expression under 8 mT EMF. Conclusion: A 5 mT EMF increased the expression of cartilage specific genes in OA chondrocytes whereas in non-OA chondrocytes no changes in gene expression were observed. An 8 mT EMF however showed no effect altogether. This suggests that EMF effects are related to EMF but also to chondrocyte quality. Further studies about the clinical relevance of this effect are necessary

    Effects of single and combined low frequency electromagnetic fields and simulated microgravity on gene expression of human mesenchymal stem cells during chondrogenesis

    Get PDF
    Introduction: Low frequency electromagnetic fields (LF-EMF) and simulated microgravity (SMG) have been observed to affect chondrogenesis. A controlled bioreactor system was developed to apply LF-EMF and SMG singly or combined during chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in 3D culture. Material and methods: An external motor gear SMG bioreactor was combined with magnetic Helmholtz coils for EMF (5 mT;15 Hz). Pellets of hMSCs (+/- TGF-beta 3)were cultured (P5) under SMG, LF-EMF, LF-EMF/SMG and control (1 g) conditions for 3 weeks. Sections were stained with safranin-O and collagen type II. Gene expression was evaluated by microarray and real-time polymerase chain reaction analysis. Results: Simulated microgravity application significantly changed gene expression;specifically, COLXA1 but also COL2A1, which represents the chondrogenic potential, were reduced (p < 0.05). Low frequency electromagnetic fields application showed no gene expression changes on a microarray basis. LF-EMF/SMG application obtained significant different expression values from cultures obtained under SMG conditions with a re-increase of COL2A1, therefore rescuing the chondrogenic potential, which had been lowered by SMG. Conclusions: Simulated microgravity lowered hypertrophy but also the chondrogenic potential of hMSCs. Combined LF-EMF/SMG provided a rescue effect of the chondrogenic potential of hMSCs although no LF-EMF effect was observed under optimal conditions. The study provides new insights into how LF-EMF and SMG affect chondrogenesis of hMSCs and how they generate interdependent effects

    Label-Free Detection of Escherichia coli Based on Thermal Transport through Surface Imprinted Polymers

    Get PDF
    This work focuses on the development of a label-free biomimetic sensor for the specific and selective detection of bacteria. The platform relies on the rebinding of bacteria to synthetic cell receptors, made by surface imprinting of polyurethane-coated aluminum chips. The heat-transfer resistance (Rth) of these so-called surface imprinted polymers (SIPs) was analyzed in time using the heat-transfer method (HTM). Rebinding of target bacteria to the synthetic receptor led to a measurable increase in thermal resistance at the solid–liquid interface. Escherichia coli and Staphylococcus aureus were used as model organisms for several proof-of-principle experiments, demonstrating the potential of the proposed platform for point-of-care bacterial testing. The results of these experiments indicate that the sensor is able to selectively detect bacterial rebinding to the SIP surface, distinguishing between dead and living E. coli cells on one hand and between Gram-positive and Gram-negative bacteria on the other hand (E. coli and S. aureus). In addition, the sensor was capable of quantifying the number of bacteria in a given sample, enabling detection at relatively low concentrations (104 CFU mL–1 range). As a first proof-of-application, the sensor was exposed to a mixed bacterial solution containing only a small amount (1%) of the target bacteria. The sample was able to detect this trace amount by using a simple gradual enrichment strategy

    Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers

    Get PDF
    This paper introduces a novel bacterial identification assay based on thermal wave analysis through surfaceimprinted polymers (SIPs). Aluminum chips are coated with SIPs, serving as synthetic cell receptors that have been combined previously with the heat-transfer method (HTM) for the selective detection of bacteria. In this work, the concept of bacterial identification is extended toward the detection of nine different bacterial species. In addition, a novel sensing approach, thermal wave transport analysis (TWTA), is introduced, which analyzes the propagation of a thermal wave through a functional interface. The results presented here demonstrate that bacterial rebinding to the SIP layer resulted in a measurable phase shift in the propagated wave, which is most pronounced at a frequency of 0.03 Hz. In this way, the sensor is able to selectively distinguish between the different bacterial species used in this study. Furthermore, a dose−response curve was constructed to determine a limit of detection of 1 × 104 CFU mL−1 , indicating that TWTA is advantageous over HTM in terms of sensitivity and response time. Additionally, the limit of selectivity of the sensor was tested in a mixed bacterial solution, containing the target species in the presence of a 99-fold excess of competitor species. Finally, a first application for the sensor in terms of infection diagnosis is presented, revealing that the platform is able to detect bacteria in clinically relevant concentrations as low as 3 × 104 CFU mL−1 in spiked urine samples

    Modelling CO formation in the turbulent interstellar medium

    Full text link
    We present results from high-resolution three-dimensional simulations of turbulent interstellar gas that self-consistently follow its coupled thermal, chemical and dynamical evolution, with a particular focus on the formation and destruction of H2 and CO. We quantify the formation timescales for H2 and CO in physical conditions corresponding to those found in nearby giant molecular clouds, and show that both species form rapidly, with chemical timescales that are comparable to the dynamical timescale of the gas. We also investigate the spatial distributions of H2 and CO, and how they relate to the underlying gas distribution. We show that H2 is a good tracer of the gas distribution, but that the relationship between CO abundance and gas density is more complex. The CO abundance is not well-correlated with either the gas number density n or the visual extinction A_V: both have a large influence on the CO abundance, but the inhomogeneous nature of the density field produced by the turbulence means that n and A_V are only poorly correlated. There is a large scatter in A_V, and hence CO abundance, for gas with any particular density, and similarly a large scatter in density and CO abundance for gas with any particular visual extinction. This will have important consequences for the interpretation of the CO emission observed from real molecular clouds. Finally, we also examine the temperature structure of the simulated gas. We show that the molecular gas is not isothermal. Most of it has a temperature in the range of 10--20 K, but there is also a significant fraction of warmer gas, located in low-extinction regions where photoelectric heating remains effective.Comment: 37 pages, 15 figures; minor revisions, matches version accepted by MNRA

    SNP association study in PMS2-associated Lynch syndrome

    Get PDF
    Lynch syndrome (LS) patients are at high risk of developing colorectal cancer (CRC). Phenotypic variability might in part be explained by common susceptibility loci identified in Genome Wide Association Studies (GWAS). Previous studies focused mostly on MLH1, MSH2 and MSH6 carriers, with conflicting results. We aimed to determine the role of GWAS SNPs in PMS2 mutation carriers. A cohort study was performed in 507 PMS2 carriers (124 CRC cases), genotyped for 24 GWAS SNPs, including SNPs at 11q23.1 and 8q23.3. Hazard ratios (HRs) were calculated using a weighted Cox regression analysis to correct for ascertainment bias. Discrimination was assessed with a concordance statistic in a bootstrap cross-validation procedure. Individual SNPs only had non-significant associations with CRC occurrence with HRs lower than 2, although male carriers of allele A at rs1321311 (6p21.31) may have increased risk of CRC (HR = 2.1, 95% CI 1.2–3.0). A polygenic risk score (PRS) based on 24 HRs had an HR of 2.6 (95% CI 1.5–4.6) for the highest compared to the lowest quartile, but had no discriminative ability (c statistic 0.52). Previously suggested SNPs do not modify CRC risk in PMS2 carriers. Future large studies are needed for improved risk stratification among Lynch syndrome patients
    • …
    corecore