14 research outputs found

    IN SILICO PHARMACOKINETICS AND MOLECULAR DOCKING OF THREE LEADS ISOLATED FROM TARCONANTHUS CAMPHORATUS L.

    Get PDF
    Objective: To investigate the pharmacokinetic and toxicity profiles and spectrum of biological activities of three phytochemicals isolated from Tarconanthus camphoratus L. Methods: Several integrated web based in silico pharmacokinetic tools were used to estimate the druggability of Hispidulin, Nepetin and Parthenolide. Afterward, the structural based virtual screening for the three compounds' potential targets was performed using PharmMapper online server. The molecular docking was conducted using Auto-Dock 4.0 software to study the binding interactions of these compounds with the targets predicted by PharmMapper server. Results: The permeability properties for all compounds were found within the limit range stated for Lipinski׳s rule of five. Only Parthenolide proved to be able to penetrate through blood brain barrier. Isopentenyl-diphosphate delta-isomerase (IPPI), uridine-cytidine kinase-2 (UCK-2) and the mitogen-activated protein kinase kinase-1 (MEK-1) were proposed as potential targets for Hispidulin, Nepetin and Parthenolide, respectively. Nepetin and Parthenolide were predicted to have anticancer activities. The activity of Nepetin appeared to be mediated through UCK-2 inhibition. On the other hand, inhibition of MEK-1 and enhancement of TP53 expression were predicted as the anticancer mechanisms of Parthenolide. The three compounds showed interesting interactions and satisfactory binding energies when docked into their relevant targets. Conclusion: The ADMET profiles and biological activity spectra of Hispidulin, Nepetin and Parthenolide have been addressed. These compounds are proposed to have activities against a variety of human aliments such as tumors, muscular dystrophy, and diabetic cataracts.Keywords: Tarconanthus camphoratus L., Hispidulin, Nepetin, Parthenolide, In silico pharmacokinetic, Molecular docking, PharmMapper server, and Auto-Dock 4.0 softwareÂ

    Integrating computational methods guided the discovery of phytochemicals as potential Pin1 inhibitors for cancer: pharmacophore modeling, molecular docking, MM-GBSA calculations and molecular dynamics studies

    Get PDF
    Pin1 is a pivotal player in interactions with a diverse array of phosphorylated proteins closely linked to critical processes such as carcinogenesis and tumor suppression. Its axial role in cancer initiation and progression, coupled with its overexpression and activation in various cancers render it a potential candidate for the development of targeted therapeutics. While several known Pin1 inhibitors possess favorable enzymatic profiles, their cellular efficacy often falls short. Consequently, the pursuit of novel Pin1 inhibitors has gained considerable attention in the field of medicinal chemistry. In this study, we employed the Phase tool from Schrödinger to construct a structure-based pharmacophore model. Subsequently, 449,008 natural products (NPs) from the SN3 database underwent screening to identify compounds sharing pharmacophoric features with the native ligand. This resulted in 650 compounds, which then underwent molecular docking and binding free energy calculations. Among them, SN0021307, SN0449787 and SN0079231 showed better docking scores with values of −9.891, −7.579 and −7.097 kcal/mol, respectively than the reference compound (−6.064 kcal/mol). Also, SN0021307, SN0449787 and SN0079231 exhibited lower free binding energies (−57.12, −49.81 and −46.05 kcal/mol, respectively) than the reference ligand (−37.75 kcal/mol). Based on these studies, SN0021307, SN0449787, and SN0079231 showed better binding affinity that the reference compound. Further the validation of these findings, molecular dynamics simulations confirmed the stability of the ligand-receptor complex for 100 ns with RMSD ranging from 0.6 to 1.8 Å. Based on these promising results, these three phytochemicals emerge as promising lead compounds warranting comprehensive biological screening in future investigations. These compounds hold great potential for further exploration regarding their efficacy and safety as Pin1 inhibitors, which could usher in new avenues for combating cancer

    Unlocking the potential of approved drugs for the allosteric inhibition of tropomyosin-receptor kinase A using molecular docking and molecular dynamics studies

    Get PDF
    Tropomyosin-receptor kinase A (TrkA) is the primary isoform among the tropomyosin-receptor kinases that have been associated with human cancer development, contributing to approximately 7.4% of all cancer cases. TrkA represents an attractive target for cancer treatment; however, currently available TrkA inhibitors face limitations in terms of resistance development and potential toxicity. Hence, the objective of this study was to identify new allosteric-approved inhibitors of TrkA that can overcome these challenges and be employed in cancer therapy. To achieve this goal, a screening of 9,923 drugs from the ChEMBL database was conducted to assess their repurposing potential using molecular docking. The top 49 drug candidates, exhibiting the highest docking scores (−11.569 to −7.962 kcal/mol), underwent MM-GBSA calculations to evaluate their binding energies. Delanzomib and tibalosin, the top two drugs with docking scores of −10.643 and −10.184 kcal/mol, respectively, along with MM-GBSA dG bind values of −67.96 and −50.54 kcal/mol, were subjected to 200 ns molecular dynamic simulations, confirming their stable interactions with TrkA. Based on these findings, we recommend further experimental evaluation of delanzomib and tibalosin to determine their potential as allosteric inhibitors of TrkA. These drugs have the potential to provide more effective and less toxic therapeutic alternatives. The approach employed in this study, which involves repurposing drugs through molecular docking and molecular dynamics, serves as a valuable tool for identifying novel drug candidates with distinct therapeutic uses. This methodology can contribute to reducing the attrition rate and expediting the process of drug discovery

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    HPTLC Fingerprint Profile and Identification of Antidiabetic and Antioxidant Leads from Bauhinia rufescens L

    No full text
    Diabetes is one of the world’s major health problems, and many reports have supported the role of oxidative stress in the pathogenesis of both type 1 and type 2 diabetes. The present study aims to evaluate the antidiabetic and antioxidant activity of Bauhinia rufescens, a plant used in Sudanese folkloric medicine for the treatment of diabetes. It was also aimed to identify isolates and characterize the bioactive antidiabetic and antioxidant compounds using bioactivity-guided fractionation followed by high-performance thin-layer chromatography (HPTLC) autobiography, liquid chromatography-mass spectrometric analysis, and nuclear magnetic resonance (NMR). Two potential compounds were successfully isolated and identified which may provide new leads for more potent analogues in drug discovery

    Utilization of computational methods for the identification of new natural inhibitors of human neutrophil elastase in inflammation therapy

    No full text
    Human neutrophil elastase (HNE) plays a crucial role in causing tissue damage in various chronic and inflammatory disorders, making it a target for treating inflammatory diseases. While some inhibitors of HNE’s activity have been identified, only a few have made it to clinical trials. In this study, computational methods were employed to identify potential natural products (NPs) capable of targeting the active site of HNE. The protein–ligand complex has been used to generate a pharmacophore model. A library of 449,008 NPs from the SN3 database was screened against the generated model, resulting in 29,613 NPs that matched the pharmacophore hypothesis. These compounds were docked into the protein active site, resulting in the identification of six promising NPs with better docking scores than the bound ligand to HNE. The top two NPs (SN0338951 and SN0436937) were further evaluated for their interaction stability with HNE through molecular dynamics simulations. Further, the pharmacokinetics and toxicity properties of these compounds were predicted. The results indicated that these two compounds have stable interactions with HNE, as well as, acceptable pharmacokinetic properties. These findings pave the path for further in vitro and in vivo studies of SN0338951 and SN0436937 as promising agents against inflammatory diseases

    Quinoline and Quinazoline Alkaloids against COVID-19: An In Silico Multitarget Approach

    No full text
    The recent outbreak of the highly contagious coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2 has created a global health crisis with socioeconomic impacts. Although, recently, vaccines have been approved for the prevention of COVID-19, there is still an urgent need for the discovery of more efficacious and safer drugs especially from natural sources. In this study, a number of quinoline and quinazoline alkaloids with antiviral and/or antimalarial activity were virtually screened against three potential targets for the development of drugs against COVID-19. Among seventy-one tested compounds, twenty-three were selected for molecular docking based on their pharmacokinetic and toxicity profiles. The results identified a number of potential inhibitors. Three of them, namely, norquinadoline A, deoxytryptoquivaline, and deoxynortryptoquivaline, showed strong binding to the three targets, SARS-CoV-2 main protease, spike glycoprotein, and human angiotensin-converting enzyme 2. These alkaloids therefore have promise for being further investigated as possible multitarget drugs against COVID-19

    Prediction of ADMET, molecular docking, DFT, and QSPR of potential phytoconstituents from Ambrosia maritima L. targeting xanthine oxidase

    No full text
    This study aimed to evaluate the xanthine oxidase (XO) inhibitory activities of seven compounds identified in the potent antioxidant ethyl acetate fraction of Ambrosia maritima L. using various computational tools. Physicochemical properties and density functional theory (DFT) analyses were performed. Subsequently, XO molecular docking was performed to identify the most promising leads. The water solubility of the compounds varied among highly soluble, moderately soluble, and soluble compounds. Four compounds were predicted to have no mutagenic or tumorigenic effect. All compounds were found to have lower binding energies than the oxypurinol standard, indicating their potential as XO inhibitors. The predicted inhibitory interactions, physicochemical properties, and DFT results suggest that two of the compounds (Kaempferol-3-O-glucoside and escululin) are promising drugs or drug leads for the treatment of certain diseases related to increased levels of XO

    Identification of Novel Natural Dual HDAC and Hsp90 Inhibitors for Metastatic TNBC Using e-Pharmacophore Modeling, Molecular Docking, and Molecular Dynamics Studies

    No full text
    Breast cancer (BC) is one of the main types of cancer that endangers women’s lives. The characteristics of triple-negative breast cancer (TNBC) include a high rate of recurrence and the capacity for metastasis; therefore, new therapies are urgently needed to combat TNBC. Dual targeting HDAC6 and Hsp90 has shown good synergistic effects in treating metastatic TNBC. The goal of this study was to find potential HDAC6 and Hsp90 dual inhibitors. Therefore, several in silico approaches have been used. An e-pharmacophore model generation based on the HDAC6-ligand complex and subsequently a pharmacophore-based virtual screening on 270,450 natural compounds from the ZINC were performed, which resulted in 12,663 compounds that corresponded to the obtained pharmacophoric hypothesis. These compounds were docked into HDAC6 and Hsp90. This resulted in the identification of three compounds with good docking scores and favorable free binding energy against the two targets. The top three compounds, namely ZINC000096116556, ZINC000020761262, and ZINC000217668954, were further subjected to ADME prediction and molecular dynamic simulations, which showed promising results in terms of pharmacokinetic properties and stability. As a result, these three compounds can be considered potential HDAC6 and Hsp90 dual inhibitors and are recommended for experimental evaluation
    corecore