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Pin1 is a pivotal player in interactions with a diverse array of phosphorylated
proteins closely linked to critical processes such as carcinogenesis and tumor
suppression. Its axial role in cancer initiation and progression, coupled with its
overexpression and activation in various cancers render it a potential candidate
for the development of targeted therapeutics. While several known Pin1 inhibitors
possess favorable enzymatic profiles, their cellular efficacy often falls short.
Consequently, the pursuit of novel Pin1 inhibitors has gained considerable
attention in the field of medicinal chemistry. In this study, we employed the
Phase tool from Schrödinger to construct a structure-based pharmacophore
model. Subsequently, 449,008 natural products (NPs) from the SN3 database
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underwent screening to identify compounds sharing pharmacophoric features
with the native ligand. This resulted in 650 compounds, which then underwent
molecular docking and binding free energy calculations. Among them, SN0021307,
SN0449787 and SN0079231 showed better docking scores with values
of −9.891, −7.579 and −7.097 kcal/mol, respectively than the reference
compound (−6.064 kcal/mol). Also, SN0021307, SN0449787 and
SN0079231 exhibited lower free binding energies
(−57.12, −49.81 and −46.05 kcal/mol, respectively) than the reference ligand
(−37.75 kcal/mol). Based on these studies, SN0021307, SN0449787, and
SN0079231 showed better binding affinity that the reference compound.
Further the validation of these findings, molecular dynamics simulations
confirmed the stability of the ligand-receptor complex for 100 ns with RMSD
ranging from 0.6 to 1.8 Å. Based on these promising results, these three
phytochemicals emerge as promising lead compounds warranting
comprehensive biological screening in future investigations. These compounds
hold great potential for further exploration regarding their efficacy and safety as
Pin1 inhibitors, which could usher in new avenues for combating cancer.

KEYWORDS

Pin1, cancer, pharmacophore modeling, molecular docking, MM-GBSA,
molecular dynamics

1 Introduction

Cancer represents a formidable global health challenge,
manifesting with millions of new incidences and fatalities
reported annually. Projections forecast a persistent upward trend
in cancer incidence, with an estimated annual caseload of nearly
22 million new instances expected by 2030 (Bray et al., 2015a; Bray
et al., 2015b). The escalating economic burden stemming from
cancer management is experienced globally, necessitating the
exploration of novel, efficacious anticancer therapeutics (Zhang
et al., 2023). While numerous genes have been implicated in
tumorigenesis, only a fraction of these genes present druggable
targets (Futreal et al., 2004; Malumbres and Barbacid, 2007).
Molecularly targeted therapy stands as a promising approach to
cancer treatment, as it holds the potential to mitigate the adverse
effects associated with traditional chemotherapy. Nevertheless,
targeting a solitary molecular pathway may fall short, given that
cancer cells frequently employ alternative survival and proliferation
mechanisms. In this context, the inhibition of proteins that govern
multiple oncogenic pathways may prove to be a viable solution
(Ciarcia et al., 2013).

One such protein exerting a pivotal role in regulating cellular
pathways is Pin1. Pin1 functions as a catalyst for the conformational
alteration of proline peptide bonds within Ser/Thr-Pro motifs,
which serve as critical target sequences for kinases and
phosphatases (Lu et al., 1996). The isomerization of these motifs
exerts influence over the phosphorylation status of numerous
proteins, thereby affecting their functions and stability (Lu et al.,
2007; Russo Spena et al., 2018). Pin1 plays a central role in various
biological processes, including the cell cycle, proliferation, motility,
cellular survival, and apoptosis (Lu et al., 1996; Ranganathan et al.,
1997; Pastorino et al., 2006). Dysregulation of Pin1 has been
implicated in various pathological conditions, particularly cancer.
It is typically found at low levels in normal tissues and cell lines, with
fluctuations throughout the cell cycle. However, in several human

malignancies, including ovarian, breast, prostate, gastric, lung,
melanoma, and cervical cancers, Pin1 experiences overexpression
and activation (Yu et al., 2020). Elevated Pin1 levels often correlate
with unfavorable clinical outcomes, underscoring its potential
prognostic value in cancer (Ayala et al., 2003; Fukuchi et al., 2006).

Considering that uncontrolled cell proliferation is a common
hallmark of cancer, the inhibition of Pin1 holds the potential to
simultaneously target multiple oncogenic signaling pathways at
distinct levels (Wulf et al., 2005). Existing research indicates that
Pin1 upregulates over 50 oncogenes while inhibiting more than
20 tumor suppressors (Chen et al., 2018). These attributes position
Pin1 inhibitors as valuable assets in the battle against cancer and
strong candidates for targeted therapy (Russo Spena et al., 2019).
Several potent antagonists of Pin1, encompassing chemical
compounds, peptide-based drugs, and nanoparticles, have been
developed (Urusova et al., 2011; Moore and Potter, 2013).
Notable examples include the NP Juglone and the small molecule
PiB and its derivatives. However, these compounds display relatively
modest inhibitory activity against Pin1 (Hennig et al., 1998; Uchida
et al., 2003). Although nanomolar peptidic Pin1 inhibitors have been
identified, their limited cell membrane permeability restricts their
applicability (Wildemann et al., 2006). Existing inhibitors often fall
short of the necessary levels of specificity, efficacy, and safety profiles
for clinical utilization. Consequently, there is an imperative need for
continued research and development endeavors to discover
Pin1 inhibitors and amplify their therapeutic potential.

The interest in screening NPs for drug discovery and
development is readily apparent in the scientific literature (Yan
et al., 2014). A substantial proportion of drugs approved by the
United States Food and Drug Administration (FDA) find their
origins in plants or their derivatives (Patridge et al., 2016).
Furthermore, more than 60% of drugs employed in the treatment
of cancer consist of natural compounds and their derivatives
(Carocho and Ferreira, 2013). NPs have garnered attention for
several compelling reasons, including their relatively cost-effective
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production, minimal adverse side effects, and high degree of
tolerability within the human body (Vahedi et al., 2008).

The pursuit of novel drugs is a resource-intensive and time-
consuming endeavor (Leelananda and Lindert, 2016; Vemula et al.,
2023). To streamline this process, integrating computer-based
approaches during the initial stages of drug discovery has proven
invaluable. One such strategy is Computer-Aided Drug Design
(CADD) (Bray et al., 2015a; Macalino et al., 2015), which plays a
pivotal role in identifying promising drug candidates through virtual
screening. CADD not only aids in the optimization of candidate
properties to maximize effectiveness and safety but also possesses
the capability to generate entirely new compounds by combining
distinct chemical fragments (Kapetanovic, 2008). Within drug
discovery, CADD serves three essential functions: narrowing
down a vast pool of compounds for experimental testing, refining
the properties of potential drugs to ensure safety and efficacy, and
facilitating the design of novel compounds by assembling different
chemical building blocks (Wang et al., 2021). Molecular docking
stands out as a widely utilized technique in virtual screening,
particularly when the 3D structure of a protein is known (Prieto-
Martínez et al., 2019). Three primary docking
approaches—ensemble docking, induced fit docking, and lock
and key docking—exist. Further categorization includes rigid
ligand and rigid receptor docking, flexible ligand and rigid
receptor docking, and flexible ligand and flexible receptor
docking (Pagadala et al., 2017). Numerous software programs,
available as both in-house tools and open-source applications,
employ various algorithms and functions for the docking process.

In the exploration of the flexibility and dynamics of drug-target
interactions, molecular dynamics (MD) simulations have emerged
as a critical tool, revolutionizing the field of drug development and
gaining widespread acceptance in computational methods such as
CADD (Fukuchi et al., 2006). MD simulations facilitate detailed
tracking of the movements and arrangements of individual particles,
offering a comprehensive understanding of the microscopic-scale
behavior of these tiny particles (Wulf et al., 2005).

This study encompassed pharmacophore modeling and
screening, molecular docking, Molecular Mechanics-generalized
Born surface area (MM-GBSA) calculations, and molecular
dynamics (MD) simulations to identify structurally novel
Pin1 inhibitors.

2 Materials and methods

All computational studies were carried out using Maestro v
12.8 of Schrödinger. Academic Desmond v6.5 by D.E. Shaw
Research was used for MD.

2.1 Preparation of protein

The three-dimensional structure of Pin1 (chain B), identified by
its PDB accession code 3I6C, was obtained from the Protein Data
Bank (PDB). This structural data was resolved at a high resolution of
1.3 Å. In order to prepare the protein for rigorous analysis, the PPW
(Protein Preparation Wizard) tool, an automated software
component within the Schrödinger suite (Madhavi Sastry et al.,

2013), was employed. The PPW tool executed a series of pivotal
operations designed to rectify any inherent structural aberrations
within the protein. The initial step encompassed preprocessing the
protein, involving the elimination of water molecules residing within
a radius of 5.0 Å from the protein’s structure. Subsequently,
appropriate assignments of bond orders were executed, and
heteroatoms that exerted negligible influence on the protein’s
conformation were deleted. Hydrogen atoms were then
systematically introduced to the carbon atoms within the protein
structure. This concerted effort aimed at establishing the necessary
chemical bonds essential for a realistic representation of the
protein’s atomic composition. For the refinement and
optimization of the protein’s spatial arrangement, the
OPLS4 force field, a robust computational model for
biomolecular simulations (Jorgensen and Tirado-Rives, 1988),
was judiciously employed. This computational approach
significantly enhanced the energetics of the protein, ensuring its
stability and reliability for subsequent analysis. To further enhance
the protein’s structural integrity and ensure its suitability for
subsequent analyses, a restrained minimization procedure was
performed, with the ultimate goal of achieving a Root Mean
Square Deviation (RMSD) value of 0.30 Å. This final step was
paramount in fine-tuning the protein’s conformation to an
optimal state, paving the way for comprehensive and insightful
investigation.

2.2 Retrieval of the database and grid
generation

A library comprising 444,450 NPs was obtained from the
SuperNatural 3.0 (SN3) database (https://bioinfapplied.charite.de/
supernatural_3/subpages/compounds.php) for this study. These
molecules underwent a rigorous minimization process using the
Macromodel program, a widely accepted tool for molecular
simulations and optimization in the scientific community. The
application of the OPLS4 force field, renowned for its good
accuracy in depicting protein-ligand interactions, was an integral
part of this minimization procedure. To facilitate precise and reliable
docking studies, the generation of a receptor grid was essential. The
receptor grid generation task was accomplished using the default
procedures embedded within the Glide module (Halgren et al.,
2004). This entailed the careful selection of coordinates
associated with a ligand that had previously formed a complex
with the protein of interest. This ligand was employed as a reference
point to construct a three-dimensional grid with dimensions,
precisely mirroring the active binding site of the receptor.

2.3 E-pharmacophore generation

Structure-based pharmacophore design represents an approach
for the systematic generation of a pharmacophore model, grounded
in the structural characteristics of the protein target and the
bioactive conformation of a co-crystallized ligand. This
methodology is predicated upon the robust and unchanging
nature of the target protein’s active site, as well as the specific
conformational attributes and binding interactions of the ligand,
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which are elucidated through X-ray crystallographic structure
analysis (Rella et al., 2006).

In this particular investigation, the Phase module, an integral
component of Schrödinger’s software suite (Salam et al., 2009), was
used to execute the pharmacophore modeling process. To construct
the pharmacophore model, the receptor-ligand complex was
employed as the foundation, utilizing the energy-based method
(E-Pharmacophore) with the primary objective of incorporating a
minimum of 5–6 features into the pharmacophore model. Notably,
Phase employs a standardized set of six chemical features,
encompassing hydrogen bond acceptor (A), hydrogen bond
donor (D), positive ionizable (P), negative ionizable (N),
hydrophobic (H), and aromatic ring (R) motifs, as the basis for
generating the pharmacophore hypothesis (Dixon et al., 2006).

Throughout the hypothesis generation process, pharmacophoric
sites were constructed around the atoms contributing to the overall
energetic profile. The energy contributions of individual atoms
within each pharmacophoric site were summated, and the sites
were subsequently ranked based on their respective energy values
(Salam et al., 2009). Ultimately, the resulting pharmacophore
hypothesis was deployed to search the database, identifying
compounds with superior potency compared to the reference
ligand, thereby aiding in the selection of potential lead
compounds for further exploration.

2.4 Pharmacophore-based ligand screening

The pharmacophore model, denoted as CPH, which was
successfully generated, played a pivotal role in the screening of the
SN3 database for potential inhibitors of Pin1. A comprehensive analysis
encompassed the examination of all molecules contained within the
database, with the objective of identifying compounds that exhibited full
matches with all the constituent sites of the pharmacophore model.

2.5 Molecular docking and binding free
energy calculations

Docking studies were executed employing the Glide software
integrated within the Schrödinger interface (Halgren et al., 2004).
Glide is a widely recognized and extensively used molecular docking
tool for its reasonably accurate estimation of protein-ligand
binding modes.

Glide incorporates two distinct scoring functions: SP (Standard
Precision) and XP (Extra Precision). The two filters vary in terms of
speed, accuracy, and scoring methodology. Specifically, the SP
mode, with a screening rate of 20 s per compound, facilitates
rapid compound screening by minimizing intermediate
conformations, final torsion refinement, and sampling. In
contrast, the XP mode adopts a more time-intensive approach,
taking 2 min per compound, employing extensive sampling, and
utilizing a sophisticated scoring function. This approach is designed
to eliminate false positive compounds. Additionally, XP mode
penalizes compounds exhibiting reduced form complementarity
with the target active site (Friesner et al., 2004). In this study, the
docking was performed in two successive steps, SP docking followed
by XP docking.

The ranking of molecules was carried out based on their docking
scores. To gain deeper insights into the protein-ligand interactions
and to guide subsequent analysis, the ligand-interaction diagram
tool in Maestro was employed.

Furthermore, it is noteworthy that recent reports emphasize the
advantages of ranking inhibitors based on more precise binding free
energy calculations, such as Molecular Mechanics/Generalized Born
Surface Area (MM/GBSA), as opposed to relying solely on XP scores
(Alzain et al., 2022). Consequently, for the most promising hits
identified, molecular MM/GBSA calculations were executed using
the Prime module within the Schrödinger interface. This energy
estimation procedure featured the utilization of the OPLS4 force
field for EMM (Energy Minimization Method) and SGBM (Surface
Generalized Born Model) for VSGB (Volume Surface Generalized
Born) calculations (Elbadwi et al., 2021).

2.6 Molecular dynamics simulation

To study the stability of the Pin1 receptor complexed with the top
three molecules, Molecular Dynamics Simulations (MDS) were
conducted utilizing the Desmond software (Ash and Fourches, 2017;
Elbadwi et al., 2021; Alzain et al., 2022). Initially, the system was
prepared by solvating it with a TIP3P water model within an
orthorhombic periodic boundary box. The dimensions of the box
were uniformly set to 10 Å for each axis, and the angles of the box
were fixed at 90°. Tomaintain charge neutrality, chloride ions (Cl-) were
introduced into the system, considering the overall charge of the model.
Furthermore, a salt concentration of 0.15M was incorporated to
simulate physiological conditions. The model generated in the
previous steps underwent energy minimization utilizing the
Desmond minimization application. A maximum of 1,000 iterations
were allowed, with convergence criteria set at 1.0 kcal/mol. All other
relevant parameters were retained at their default values. The Smooth
Particle Mesh Ewald (SPME) technique was deployed for handling
long-range electrostatic interactions, employing a tolerance of 1e-09.
Short-range electrostatic interactions were handled using a cutoff radius
of 9 Å. Subsequently, the minimized model was employed for MDS
within the NPT ensemble. These simulations were conducted at a
temperature of 300 K and a pressure of 1 bar. The simulations extended
over a duration of 100 nanoseconds (ns), employing the general
sampling method.

A comprehensive analysis was conducted utilizing the trajectory
file obtained from themolecular dynamics simulations. This analysis
encompassed a range of assessments and evaluations to elucidate the
behavior and interactions of the system under investigation.

3 Results and discussion

The workflow of this study is summarized in Figure 1.

3.1 E-pharmacophore model and
pharmacophore-based ligand screening

The Phase module was employed to construct an electronic
pharmacophore (e-pharmacophore) model. This model was
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developed using the ligand bound to Pin1 and incorporated both
structural and energetic attributes. The primary objective of the
e-pharmacophore model was to discern favorable regions within the
active site for the purpose of designing innovative inhibitors
(Tuccinardi et al., 2016). In the course of e-pharmacophore
generation, Phase retrieved three distinct pharmacophoric
features. These features were used to generate a three-point
e-pharmacophore model, comprising one negative ionizable (N)
feature and two aromatic rings (R) features, denoted as NRR
(Figure 2). The N4 feature exhibited a radius of 2 Å and an
energy of −1.25 kcal/mol, while the R5 and R7 sites shared the

same radius as N4 but had energies of −0.51 and −0.68 kcal/mol,
respectively.

Subsequently, the e-pharmacophore model was employed to
screen the SN3 database, aiming to identify potential Pin1 inhibitors.
During the screening process, conformers of each ligand within the
database were scrutinized to identify molecules that conformed to
the e-pharmacophore model. The molecular sites were predefined to
match the three-point e-pharmacophore model. The utilization of
the e-pharmacophore model in screening led to the retrieval of
658 hit molecules that matched the three pharmacophoric features
(NRR) from a total of 449,005 NPs in the SN3 database. It can be

FIGURE 1
The overall works of the study.

FIGURE 2
The generated pharmacophore hypothesis of Pin1 complexed with the reference (A) the hypothesis (B) hypothesis aligned with the reference ligand
(C) hypothesis distance.
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inferred that, given the e-pharmacophore model’s construction
based on Pin1-bound references and its alignment with all
characteristics defined in the constructed pharmacophore, all
658 retrieved molecules possess the requisite attributes essential
for binding to Pin1. These 658 hit molecules were subsequently
subjected to further in silico screening to identify the most promising
candidates for subsequent investigation.

3.2 Docking and MM-GBSA calculations

The Docking is a valuable computational method employed for
the discovery of novel Pin1 inhibitors, commonly utilized when
there is available structural information concerning the target
receptor (Ripphausen et al., 2012; Irwin and Shoichet, 2016). It
facilitates the prediction of energetically favorable binding
orientations of ligands to the target protein, enabling the
prioritization of compound libraries based on their potential for
effective interactions with the target (Tuccinardi et al., 2016). In this
investigation, we conducted an in silico screening to identify
molecules with superior docking scores compared to the
reference ligand. We utilized the 658 hit molecules obtained from
the Phase screening for this screening process. The in silico screening
procedure consisted of two phases. Initially, the hits molecules
underwent SP docking, resulting in the identification of
48 molecules with docking scores below −7.00 kcal/mol. These
48 molecules proceeded to the subsequent phase, which involved
XP docking. From the XP docking outcomes, we identified 30 hit
molecules with higher docking scores than the reference ligand.

To assess the binding stability of these 30 hit molecules with the
Pin1 protein, we introduced a thermodynamic concept. We
employed Prime MM/GBSA to filter and analyze the receptor-
ligand binding modes generated by the XP docking simulation.
This analysis aimed to ascertain the free binding energy and evaluate
the binding stability of the 30 hit molecules. Our findings revealed
that three molecules (SN0021307, SN0449787 and SN0079231)
exhibited lower free binding energies
(−57.12, −49.81 and −46.05 kcal/mol, respectively) than the
reference ligand (−37.75 kcal/mol). Consequently, we eliminated
the remaining hits, and the top three molecules with the lowest
binding energies underwent interaction analysis.

Pin1 is a protein that can be subdivided into two distinct
structural domains. The first domain is the catalytic PPIase
domain, spanning residues 45 to 163. This domain is responsible
for the arotamase function, which entails peptide-bond
isomerization between proline and other amino acids. The
second domain is the N-terminal WW domain, covering residues
1 to 39 (Ranganathan et al., 1997; Guo et al., 2009). The active pocket
of the PPIase domain is the region where catalytic activity occurs,
composed of specific amino acid residues including Lys63, Arg68,
Arg69, Cys113, Leu122, Met130, Gln131, Phe134, Thr152, and
Ser154. These residues engage with substrates and contribute to
Pin1’s enzymatic activity (Guo et al., 2009).

To elucidate the structural binding mechanisms of the top three
compounds to Pin1, we employed Maestro’s ligand-interaction
diagram tool. This tool enabled us to show the docked
conformations and interactions of these molecules with the
crucial active site residues of Pin1, as illustrated in Figure 3. As a

reference for our docking study, we selected the native ligand from
the crystal structure of the Pin1 protein available in the PDB. The
docking interaction analysis revealed that the hits possess the
capability to bind to the active pocket within Pin1’s PPIase
domain, as summarized in Table 1. These interactions
encompassed the formation of hydrogen bonds with key residues,
including LYS60, SER114, LEU122, GLN129, GLN131, ASP121, and
ARG69. These findings are in concurrence with analogous studies in
the literature, where other research teams have reported hydrogen
bond interactions between their ligands and Gln131, Lys63, SER154,
and ARG69. For instance, Zhang et al. identified hydrogen bond
interactions between their ligands and Gln131 and Lys63, while Poli
et al. and Ma et al. observed H-bond interactions with SER154 and
ARG69 in their in silico investigations of Pin1 (Ma et al., 2019; Poli
et al., 2022; Zhang et al., 2023).

FIGURE 3
(A) 3D interaction diagrams; (B) Position of compounds in the
Pin1 protein cavities; (C) 2D interaction diagrams.
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TABLE 1 XP docking score, MM-GBSA, and the interaction of the top three compounds with Pin1 protein.

SN3 ID 2D structure Docking score
(kcal/mol)

MM-GBSA dG
bind (kcal/mol)

Hydrogen
bonding

Hydrophobic interactions

SN0021307 −9.891 −57.12 LYS60, SER114, LEU122,
GLN129, GLN131

MET130, LEU61, LEU122, CYS113

SN0449787 −7.579 −49.81 ASP121, SER154, LYS63,
ARG69, SER114

PHE134, MET130, LEU61, ALA124,
LEU122, ALA118, CYS113, TRP73

SN0079231 −7.097 −46.05 SER154, GLN131 MET130, PHE134, LEU61, CYS113,
LEU122

Reference −6.064 −37.57 ARG69, LYS63, SER114 MET130, PHE134, LEU122, CYS113,
LEU61

FIGURE 4
H-bond interaction of the top three compounds: (A) SN0021307; (B) SN0449787; (C) SN0079231.
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TABLE 2 H-bond analysis of the top three compounds with Pin1 protein.

Compound Hydrogen bonding

No of H-bonds Receptor residue Ligand group Distance (Å)

SN0021307 5 LYS63: NH2- -O- 4.05

SER114: NH- -O=C- 2.34

LEU122: C=O- -OH 1.77

GLN129: O- -OH 1.67

GLN131: C=O- -OH 1.78

SN0449787 5 ASP121: C=O- -OH 1.85

SER154: O- -OH 1.79

LYS63: NH- -N- 2.15

ARG69: NH2- -CH- 3.65

SER114: OH- -O=C- 2.37

SN0079231 2 Ser154: C=O- -OH 1.71

GLN131: NH- -O=C- 2.08

FIGURE 5
RMSD of Pin1-complexes: (A) SN0021307; (B) SN0449787; (C) SN0079231 (D); Reference.
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Upon comparing the top molecules with the reference ligand, we
observed shared hydrogen bond interactions with ARG69, LYS63,
and SER114. Given that the formation of hydrogen bonds plays a
pivotal role in determining the binding strength of ligands to
proteins, the presence of one or more hydrogen bonds with key
residues within the Pin1 domain is a critical factor in the design of
new inhibitors. We conducted a comprehensive analysis of the
hydrogen bonds (Figure 4), considering their quantity and
distance, as presented in Table 2.

Moreover, the hit molecules exhibited hydrophobic interactions
with crucial residues, including PHE134, MET130, LEU61, LEU122,
ALA118, CYS113, TRP73, and ALA124. Interestingly, the reference
ligand exclusively manifested hydrophobic interactions with
MET130, PHE134, LEU122, CYS113, and LEU61 residues, as

outlined in Table 1. These findings harmonize with results from
other research groups, such as Liu et al., who observed hydrophobic
interactions involving Leu122, Cys113, and Ser114 in their ligand,
and Poli et al., who reported interactions with LEU122 and MET130
(Liu et al., 2017; Poli et al., 2022).

Based on the docking scores and the comparative analysis of
interactions with the reference and existing literature, the top three
compounds were subjected to MD simulations.

3.3 Molecular dynamics simulations

Molecular dynamics (MD) is a computational tool that
complements docking by enabling the study of protein-ligand
complexes’ dynamic behavior over time. It plays a pivotal role in
refining and validating docking predictions by assessing the
reliability of predicted binding modes and filtering out
compounds that fail to maintain stable interactions. MD
simulations also yield diverse protein conformations for
subsequent docking studies, thereby capturing the dynamic
nature of the complex. These simulations consider various
factors, including temperature and solvent effects, to provide
insights into stability, flexibility, and conformational changes
(Aghazadeh Tabrizi et al., 2016; Offutt et al., 2016; Bharatham
et al., 2017).

In this study, we confirmed the conformational stability and
interactions observed during MD simulations of the Pin1 protein

TABLE 3 Average of RMSD and RMSF values for the top two compounds and
the reference ligands.

Compound RMSD RMSF

Cα (Å) ligand (Å) Cα (Å) ligand (Å)

SN0021307 1.27 ± 0.16 2.93 ± 0.29 0.72 ± 0.37 1.4 ± 0.77

SN0449787 1.27 ± 0.16 3.08 ± 0.57 0.72 ± 0.37 2.33 ± 1.09

SN0079231 1.27 ± 0.16 3.5 ± 0.52 0.72 ± 0.37 0.89 ± 0.39

Reference 2.54 ± 0.39 1.75 ± 0.27 0.72 ± 0.37 1.06 ± 0.41

FIGURE 6
RMSF profile of Pin1 protein with the three complexes: (A) SN0021307; (B) SN0449787; (C) SN0079231; (D) Reference.
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with the top three compounds (SN0021307, SN0449787 and
SN0079231) and its native ligand through several analyses,
including RMSD Analysis, RMSF Analysis, Interaction Analysis,
and Ligand Stability Analysis.

In the Pin1-SN0021307 complex, the receptor exhibited slight
fluctuations ranging between 0.8 and 1.6 Å in the first 20 ns but then
stabilized with an RMSD between 1.2 and 1.6 Å throughout the
simulation (Figure 5; Table 3). The ligand initially showed
fluctuations with an RMSD ranging from 0.6 to 1.8 Å but

eventually stabilized, maintaining strong interactions with the
protein for the remainder of the simulation. In the Pin1-
SN0449787 complex, the receptor displayed fluctuations with an
RMSD range of 0.8–1.6 Å in the first 20 ns, followed by equilibration
with fluctuations between 1.2 and 1.6 Å. The ligand exhibited
fluctuations at specific time intervals but overall remained stable
and strongly interacted with the receptor during most of the
simulation. In contrast, in the Pin1-SN0079231 complex, the
receptor remained stable with slight deviations and an RMSD

FIGURE 7
Pin1-complex’s interaction diagram: (A) SN0021307; (B) SN0449787; (C) SN0079231; (D) Reference.

TABLE 4 Interactions percentage of the top three compounds and the reference ligand.

Compound HB Hydrophobic Water bridge Ionic

SN0021307 ARG68(65%), MET130(45%), GLN129(40%),
ARG69, GLY128, GLN131, LYS132

— LYS132(40%), ARG68(35%), ARG69, GLN129,
MET130, GLN131, GLU135, ASP153, SER154,

GLU 100

ARG68, LYS132

SN0449787 ARG69, SER71, SER114, LYS117 ARG69, TRP73, LYS117 ARG69, SER71, GLU76, SER1115, LYS117,
ASP121, LEU122

ARG69 (50%)

SN0079231 GLN129(70%), LYS63(40%), ARG69(40%),
SER154, ARG67, SER71, SER114, LEU122,

GLN131

MET130, LEU122, LEU61,
LYS113, PHE134

ASP153(40%), SER115, SER114, LYS117,
ASP121, LEU122, GLN129, GLN131, SER154,

HIS157, HIS59

LYS63(45%),
ARG69(45%)

Reference — PHE125(60%), LEU122,
MET139, ARG54

GLN129, ARG54, ALA124 —
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value ranging from 1 to 1.6 Å, while the ligand maintained
equilibrium with slight fluctuations with the protein throughout
the simulation. Regarding the bound ligand, the protein remained
stable with minimal fluctuations, except for the initial 5 ns. The
ligand also maintained equilibrium with slight deviations and
consistent contact with the protein. These RMSD analyses
collectively suggest that the studied compounds and the native
ligand form stable complexes with Pin1.

RootMean Square Fluctuation (RMSF) is a valuable property for
assessing the structural flexibility of proteins during MD. It provides
insights into the fluctuations of specific amino acid residues and
helps evaluate the impact of ligand binding on protein stability. In
this study, we calculated relative RMSF values to analyze the
fluctuations of amino acid residues within the protein when
bound to the ligands. An RMSF value exceeding 3 Å suggests
increased amino acid fluctuations upon ligand binding, indicating

potential disruption of the protein’s structural stability. Conversely,
an RMSF value below 3 Å implies reduced amino acid fluctuations,
indicating enhanced protein stability and resistance to structural
changes. For the selected complexes in this study, RMSF values
ranged from 0.4 to 3 Å, reflecting moderate fluctuations in amino
acid residues (Figure 6; Table 3). The average RMSF values of the
protein bound the ligands as follow: 1.4 Å for SN0449787, 2.33 Å for
SN0021307, 0.89 Å for SN0079231, and 1.06 Å for the reference
ligand. These RMSF values collectively indicate both the stability
and flexibility of the complexes during the MD simulations.

To gain deeper insights into the potential of the designed molecules
as Pin1 inhibitors, we analyzed the interactions between the molecules
and key residues within the binding site during the 100 ns MD
simulations. Figure 7 provides a schematic representation of these
interactions, including their formation percentages. These
interactions were categorized into various types, including direct

FIGURE 8
PL-contacts diagram: (A) SN0021307 (B) SN0449787 (C) SN0079231 (D) Reference.

TABLE 5 Average rGyr and SASA values for the top compounds and the reference ligands.

Compound RMSD (Å) rGyr (Å) MolSA (Å) SASA (Å) PSA (Å)

SN0021307 2.93 ± 0.29 5.28 ± 0.24 565.5 ± 25.72 762.9 ± 79.42 555.2 ± 38.12

SN0449787 3.08 ± 0.57 5.78 ± 0.4 598.5 ± 18.82 828.9 ± 61.92 190.9 ± 15.62

SN0079231 3.5 ± 0.52 4.9 ± 0.19 474.1 ± 13.12 304.9 ± 32.62 204.9 ± 11.42

Reference 1.75 ± 0.27 4.2 ± 0.28 334.4 ± 3.52 441.7 ± 38.72 117.1 ± 3.52
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hydrogen bonds, indirect hydrogen bonds via water bridges, as well as
hydrophobic and ionic interactions. The specific residues involved in
these interactions were identified. The formation percentages allow us
to assess the stability and frequency of these interactions throughout the
simulation. By analyzing these percentages, we can identify compounds
that consistently form favorable interactions with Pin1, indicating their
potential as effective inhibitors.

For instance, SN0449787 demonstrated both direct and indirect
hydrogen bond interactions with several key residues within the
Pin1 binding site. Direct hydrogen bonds were formed with ARG68
(65%), MET130 (45%), and GLN129 (40%), among others. Indirect
interactions, mediated by water bridges, were observed with residues
such as LYS132, ARG68, ARG69, GLN129, MET130, GLN131,
GLU135, ASP153, SER154, and GLU100. Ionic interactions were
noted with ARG68 and LYS132. The interactions of the other
complexes are detailed in Table 4, with the reference ligand
showing no direct hydrogen bond interactions.

The Ligand RMSD values for SN0021307, SN0449787,
SN0079231, and the reference ligand spanned from 0.2 to 3 Å,
3 to 3.5 Å, 1.5 to 4 Å, and 0.8 to 2.4 Å, respectively (Figure 8;
Table 5). Their respective average values were 1.38 Å, 0.74 Å, 1.56 Å,
and 0.63 Å. Additionally, the rGyr values, indicative of protein
folding status, exhibited fluctuations between 5.2 and 6 Å for
SN0021307, 5.4–6.6 Å for SN0449787, 4.8–5.6 Å for SN0079231,
and 4–5.2 Å for the reference ligand. To assess the exposure of the
protein complexes to solvent molecules and their structural stability,
various surface area measurements, including MolSA, SASA, and
PSA, were examined.

For SN0021307, MolSA ranged from 520–600 Å2, SASA from
600–900 Å2, and PSA from 540–600 Å2, with average values
estimated at 565.5 Å2, 762.9 Å2, and 555.2 Å2, respectively. In the
case of SN0449787, MolSA spanned 570–630 Å2, SASA from
700–900 Å2, and PSA from 150–210 Å2, with average values of
598.5 Å2, 828.9 Å2, and 190.9 Å2, respectively.
SN0079231 exhibited MolSA between 460 and 590 Å2, SASA
from 420–480 Å2, and PSA from 180–240 Å2, with average values
of 474.1 Å2, 304.9 Å2, and 204.9 Å2, respectively. In the case of the
reference, MolSA, SASA, and PSA ranged from 330–340 Å2,
400–560 Å2, and 104–128 Å2, respectively, with average values of
334.4 Å2, 441.7 Å2, and 117.1 Å2. These findings indicate that the
values for each ligand remained within specific ranges, signifying
stability and successful complex formation.

The utilization of Computer-Aided Drug Design (CADD) tools
in drug discovery research has established new standards for
identifying promising chemical compounds targeting specific
receptors. It is undeniable that CADD approaches significantly
contribute to enhancing the drug discovery pipeline. The four
proposed molecules exhibit promising binding affinity towards
PIN1, as evidenced by molecular docking, MM-GBSA
calculations, and MD simulation studies. However, to validate the
potential of these molecules against PIN1, several experimental
verifications are imperative. The Surface Plasmon Resonance
(SPR) assay presents an effective method for confirming the
binding affinity of the molecules. A kinetic study offers a suitable
approach to scrutinize the binding and unbinding mechanisms of
these molecules. Further optimization of the molecules may be
necessary based on experimental assessments to improve their
efficacy and therapeutic potential.

4 Conclusion

This research focused on targeting the distinctive enzyme PIN1,
crucial for catalyzing proline isomerization within phospho-serine/
threonine-proline motifs, with significant therapeutic implications
for cancer treatment. Employing an in silico approach, the study
utilized an e-pharmacophore model to guide the screening of a
library of natural products (NPs) from the SN3 database. The
screening process was refined through SP and XP docking filters,
yielding 34 lead compounds with superior binding affinity compared
to the co-crystalized inhibitor. Further refinement employed Prime/
MM-GBSA calculations, identifying seven compounds with higher
binding energies than the reference ligand. To validate their
potential as PIN1 inhibitors and assess stability, molecular dynamics
(MD) simulations were conducted, confirming stable binding
interactions with the PIN1 protein for the identified lead
compounds. Notably, three phytochemicals—SN0021307,
SN0449787, and SN0079231—emerged with remarkable affinity
toward the PIN1 protein.
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