586 research outputs found
Built-up areas within and around protected areas: Global patterns and 40-year trends
Protected areas (PAs) are a key strategy in global efforts to conserve biodiversity and ecosystem services that are critical for human well-being. Most PAs have some built-up structures within their boundaries or in surrounding areas, ranging from individual buildings to villages, towns and cities. These structures, and the associated human activities, can exert direct and indirect pressures on PAs. Here we present the first global analysis of current patterns and observed long-term trends in built-up areas within terrestrial PAs and their immediate surroundings. We calculate for each PA larger than 5 km2 and for its 10-km unprotected buffer zone the percentage of land area covered by built-up areas in 1975, 1990, 2000 and 2014. We find that globally built-up areas cover only 0.12% of PA extent and a much higher 2.71% of the unprotected buffers as of 2014, compared to 0.6% of all land (protected or unprotected). Built-up extent in and around PAs is highest in Europe and Asia, and lowest in Africa and Oceania. Built-up area percentage is higher in coastal and small PAs, and lower in older PAs and in PAs with stricter management categories. From 1975 to 2014, the increase in built-up area was 23 times larger in the 10-km unprotected buffers than within PAs. Our findings show that the development of built-up structures remains limited within the boundaries of PAs but highlight the need to carefully manage the considerable pressure that PAs face from their immediate surroundings
Mapping Status and Conservation of Global At-Risk Marine Biodiversity
To conserve marine biodiversity, we must first understand the spatial distribution and status of at‐risk biodiversity. We combined range maps and conservation status for 5,291 marine species to map the global distribution of extinction risk of marine biodiversity. We find that for 83% of the ocean, \u3e25% of assessed species are considered threatened, and 15% of the ocean shows \u3e50% of assessed species threatened when weighting for range‐limited species. By comparing mean extinction risk of marine biodiversity to no‐take marine reserve placement, we identify regions where reserves preferentially afford proactive protection (i.e., preserving low‐risk areas) or reactive protection (i.e., mitigating high‐risk areas), indicating opportunities and needs for effective future protection at national and regional scales. In addition, elevated risk to high seas biodiversity highlights the need for credible protection and minimization of threatening activities in international waters
Invasion of freshwater ecosystems is promoted by network connectivity to hotspots of human activity
Aim: Hotspots of human activity are focal points for ecosystem disturbance and non‐native introduction, from which invading populations disperse and spread. As such, connectivity to locations used by humans may influence the likelihood of invasion. Moreover, connectivity in freshwater ecosystems may follow the hydrological network. Here we tested whether multiple forms of connectivity to human recreational activities promotes biological invasion of freshwater ecosystems.
Location: England, UK.
Time period: 1990–2018.
Major taxa studied: One hundred and twenty‐six non‐native freshwater birds, crustaceans, fish, molluscs and plants.
Methods: Machine learning was used to predict spatial gradients in human recreation and two high risk activities for invasion (fishing and water sports). Connectivity indices were developed for each activity, in which human influence decayed from activity hotspots according to Euclidean distance (spatial connectivity) or hydrological network distance (downstream, upstream and along‐channel connectivity). Generalized linear mixed models identified the connectivity type most associated to invasive species richness of each group, while controlling for other anthropogenic and environmental drivers.
Results: Connectivity to humans generally had stronger positive effects on invasion than all other drivers except recording effort. Recreation had stronger influence than urban land cover, and for most groups high risk activities had stronger effects than general recreation. Downstream human connectivity was most important for invasion by most of the groups, potentially reflecting predominantly hydrological dispersal. An exception was birds, for which spatial connectivity was most important, possibly because of overland dispersal capacity.
Main conclusions: These findings support the hypothesis that freshwater invasion is partly determined by an interaction between human activity and species dispersal in the hydrological network. By comparing alternative connectivity types for different human activities, our approach could enable robust inference of specific pathways and spread mechanisms associated with particular taxa. This would provide evidence to support better prioritization of surveillance and management for invasive non‐native species
When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil
Providing food and other products to a growing human population while safeguarding natural ecosystems and the provision of their services is a significant scientific, social and political challenge. With food demand likely to double over the next four decades, anthropization is already driving climate change and is the principal force behind species extinction, among other environmental impacts. The sustainable intensification of production on current agricultural lands has been suggested as a key solution to the competition for land between agriculture and natural ecosystems. However, few investigations have shown the extent to which these lands can meet projected demands while considering biophysical constraints. Here we investigate the improved use of existing agricultural lands and present insights into avoiding future competition for land. We focus on Brazil, a country projected to experience the largest increase in agricultural production over the next four decades and the richest nation in terrestrial carbon and biodiversity. Using various models and climatic datasets, we produced the first estimate of the carrying capacity of Brazil's 115 million hectares of cultivated pasturelands. We then investigated if the improved use of cultivated pasturelands would free enough land for the expansion of meat, crops, wood and biofuel, respecting biophysical constraints (i.e., terrain, climate) and including climate change impacts. We found that the current productivity of Brazilian cultivated pasturelands is 32–34% of its potential and that increasing productivity to 49–52% of the potential would suffice to meet demands for meat, crops, wood products and biofuels until at least 2040, without further conversion of natural ecosystems. As a result up to 14.3 Gt CO2 Eq could be mitigated. The fact that the country poised to undergo the largest expansion of agricultural production over the coming decades can do so without further conversion of natural habitats provokes the question whether the same can be true in other regional contexts and, ultimately, at the global scale
Developing ecosystem service indicators: experiences and lessons learned from sub-global assessments and other initiatives
People depend upon ecosystems to supply a range of services necessary for their survival and well-being. Ecosystem service indicators are critical for knowing whether or not these essential services are being maintained and used in a sustainable manner, thus enabling policy makers to identify the policies and other interventions needed to better manage them. As a result, ecosystem service indicators are of increasing interest and importance to governmental and inter-governmental processes, including amongst others the Convention on Biological Diversity (CBD) and the Aichi Targets contained within its strategic plan for 2011-2020, as well as the emerging Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES). Despite this growing demand, assessing ecosystem service status and trends and developing robust indicators is o!en hindered by a lack of information and data, resulting in few available indicators. In response, the United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), together with a wide range of international partners and supported by the Swedish International Biodiversity Programme (SwedBio)*, undertook a project to take stock of the key lessons that have been learnt in developing and using ecosystem service indicators in a range of assessment contexts. The project examined the methodologies, metrics and data sources employed in delivering ecosystem service indicators, so as to inform future indicator development. This report presents the principal results of this project
New Tools to Identify the Location of Seagrass Meadows: Marine Grazers as Habitat Indicators
Seagrasses are hugely valuable to human life, but the global extent of seagrass meadows remains unclear. As evidence of their value, a United Nations program exists (http://data.unep-wcmc.org/datasets/7) to try and assess their distribution and there has been a call from 122 scientists across 28 countries for more work to manage, protect and monitor seagrass meadows (http://www.bbc.com/news/science-environment-37606827). Emerging from the 12th International Seagrass Biology Workshop, held in October2016, has been the view that grazing marine megafauna may play a useful role in helping to identify previously unknown seagrass habitats. Here we describe this concept,showing how detailed information on the distribution of both dugongs (Dugong dugon) and green sea turtles (Chelonia mydas) obtained, for example, by aerial surveys and satellite tracking, can reveal new information on the location of seagrass meadows. We show examples of how marine megaherbivores have been effective habitat indicators,revealing major, new, deep-water seagrass meadows and offering the potential for more informed estimates of seagrass extent in tropical and sub-tropical regions where currentinformation is often lacking
Towards informed and multi-faceted wildlife trade interventions
International trade in wildlife is a key threat to biodiversity conservation. CITES, the Convention on International Trade in Endangered Species of Wild Fauna and Flora, is the primary mechanism for controlling international wildlife trade and seeks to ensure it is sustainable, relying on trade bans and controls. However, there has been little comprehensive review of the effectiveness of CITES. Here, we review typical and atypical approaches taken to regulate wildlife trade in CITES and assert that it boasts few successes. We attribute this to: non-compliance, an over reliance on regulation, lack of knowledge of listed species, ignorance of the reality of market forces, and influence among CITES actors. To more effectively manage trade we argue that interventions need to go beyond regulation and should be multi-faceted, reflecting the complexity of wildlife trade. To inform such interventions we assert an intensive research effort is needed and we outline six key research areas: (1) factors undermining wildlife trade governance at the national level, (2) determining sustainable harvest rates for CITES species, (3) gaining the buy-in of local communities in implementing CITES, (4) supply and demand based market interventions, (5) means of quantifying illicit trade, and (6) political processes and influence within CITES
Conservation Performance of Tropical Protected Areas: How Important is Management?
Increasing the coverage of effectively managed protected areas (PAs) is a key focus of the 2020 Aichi biodiversity targets. PA management has received considerable attention, often based on the widely-held, but rarely examined, assumption that positive conservation outcomes will result from increased PA management inputs. To shed light on this assumption, we integrated data on PA management factors with 2006-2011 avoided forest degradation and deforestation across the Peruvian Amazon, using a counterfactual approach, combined with interviews and ranking exercises. We show that while increasing PA management input to Amazonian PAs tended to reduce likelihoods of forest degradation and deforestation, the associations were weak. Key challenges facing PAs ranked by PA managers included wider law enforcement, corruption and land title issues, rather than local management factors. We therefore encourage the post-2020 conservation targets to adopt holistic approaches beyond PA management, incorporating political, institutional and governance contexts across scales.This work was supported by the Economic and Social Research Council (grant number ES/I019650/1); Cambridge Political Economy Society; Cambridge Philosophical Society; St John’s College; and the Department of Geography, University of Cambridge
- …