173 research outputs found

    Hydrological Statistics for Regulating Hydropower

    Get PDF

    Reactive transport modeling of leaking CO2-saturated brine along a fractured pathway

    Get PDF
    One concern regarding the underground storage of carbon dioxide (CO2) is its potential leakage from reservoirs. Over short period of time, the leakage risk is related mainly to CO2 as a separate supercritical fluid phase. However, over longer periods upon complete dissolution of injected CO2 in the fluid, the leakage risk is associated with dissolved phase CO2. Over the geological time scales, large-scale groundwater motion may cause displacement of brine containing dissolved CO2 along the conducting pathways. In this paper, we present a comprehensive modeling framework that describes the reactive transport of CO2-saturated brine along a fracture in the clay caprock based on the future, hypothetical leakage of the dissolved phase CO2. This study shows that the transport of leaked dissolved CO2 is significantly retarded by a combination of various physical and geochemical processes, such as mass exchange between conducting fracture and the neighboring rock matrix through molecular diffusion, sorption and calcite dissolution in the rock matrix. Mass stored in aqueous and adsorbed states in the rock matrix caused retention of dissolved CO2 along the leakage pathway. Calcite dissolution reaction in the rock matrix resulted in consumption of leaking dissolved CO2 and reduced its mass along the leakage pathway. Consumption and retention of dissolved CO2 along the leakage pathway have important implications for analyzing the potential reduction of CO2 fluxes from storage reservoirs over large periods and long travel pathways

    The role of advection and dispersion in the rock matrix on the transport of leaking CO2-saturated brine along a fractured zone

    Get PDF
    CO2 that is injected into a geological storage reservoir can leak in dissolved form because of brine displacement from the reservoir, which is caused by large-scale groundwater motion. Simulations of the reactive transport of leaking CO2aq along a conducting fracture in a clay-rich caprock are conducted to analyze the effect of various physical and geochemical processes. Whilst several modeling transport studies along rock fractures have considered diffusion as the only transport process in the surrounding rock matrix (diffusive transport), this study analyzes the combined role of advection and dispersion in the rock matrix in addition to diffusion (advection-dominated transport) on the migration of CO2aq along a leakage pathway and its conversion in geochemical reactions. A sensitivity analysis is performed to quantify the effect of fluid velocity and dispersivity. Variations in the porosity and permeability of the medium are found in response to calcite dissolution and precipitation along the leakage pathway. We observe that advection and dispersion in the rock matrix play a significant role in the overall transport process. For the parameters that were used in this study, advection-dominated transport increased the leakage of CO2aq from the reservoir by nearly 305%, caused faster transport and increased the mass conversion of CO2aq in geochemical reactions along the transport pathway by approximately 12.20% compared to diffusive transport

    Injection of CO2-saturated brine in geological reservoir: a way to enhanced storage safety

    Get PDF
    Injection of free-phase supercritical CO2 into deep geological reservoirs is associated with risk of considerable return flows towards the land surface due to the buoyancy of CO2, which is lighter than the resident brine in the reservoir. Such upward movements can be avoided if CO2 is injected in the dissolved phase (CO2aq). In this work, injection of CO2-saturated brine in a subsurface carbonate reservoir was modelled. Physical and geochemical interactions of injected low-pH CO2-saturated brine with the carbonate minerals (calcite, dolomite and siderite) were investigated in the reactive transport modelling. CO2-saturated brine, being low in pH, showed high reactivity with the reservoir minerals, resulting in a significant mineral dissolution and CO2 conversion in reactions. Over the injection period of 10 yr, up to 16% of the injected CO2 was found consumed in geochemical reactions. Sorption included in the transport analysis resulted in additional quantities of CO2 mass stored. However, for the considered carbonate minerals, the consumption of injected CO2aq was found mainly in the form of ionic trapping

    Spectral Decomposition of Regulatory Thresholds for Climate-Driven Fluctuations in Hydro- and Wind Power Availability

    Get PDF
    Abstract Climate-driven fluctuations in the runoff and potential energy of surface water are generally large in comparison to the capacity of hydropower regulation, particularly when hydropower is used to balance the electricity production from covarying renewable energy sources such as wind power. To define the bounds of reservoir storage capacity, we introduce a dedicated reservoir volume that aggregates the storage capacity of several reservoirs to handle runoff from specific watersheds. We show how the storage bounds can be related to a spectrum of the climate-driven modes of variability in water availability and to the covariation between water and wind availability. A regional case study of the entire hydropower system in Sweden indicates that the longest regulation period possible to consider spans from a few days of individual subwatersheds up to several years, with an average limit of a couple of months. Watershed damping of the runoff substantially increases the longest considered regulation period and capacity. The high covariance found between the potential energy of the surface water and wind energy significantly reduces the longest considered regulation period when hydropower is used to balance the fluctuating wind power

    LPMLE3 : a novel 1-D approach to study water flow in streambeds using heat as a tracer

    Get PDF
    We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature-time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1-D methods

    Transient Storage as a Function of Geomorphology, Discharge, and Permafrost Active Layer Conditions in Arctic Tundra Streams

    Get PDF
    Transient storage of solutes in hyporheic zones or other slow-moving stream waters plays an important role in the biogeochemical processes of streams. While numerous studies have reported a wide range of parameter values from simulations of transient storage, little field work has been done to investigate the correlations between these parameters and shifts in surface and subsurface flow conditions. In this investigation we use the stream properties of the Arctic (namely, highly varied discharges, channel morphologies, and subchannel permafrost conditions) to isolate the effects of discharge, channel morphology, and potential size of the hyporheic zone on transient storage. We repeated stream tracer experiments in five morphologically diverse tundra streams in Arctic Alaska during the thaw season (May–August) of 2004 to assess transient storage and hydrologic characteristics. We compared transient storage model parameters to discharge (Q), the Darcy-Weisbach friction factor (f), and unit stream power (ω). Across all studied streams, permafrost active layer depths (i.e., the potential extent of the hyporheic zone) increased throughout the thaw season, and discharges and velocities varied dramatically with minimum ranges of eight-fold and four-fold, respectively. In all reaches the mean storage residence time (tstor) decreased exponentially with increasing Q, but did not clearly relate to permafrost active layer depths. Furthermore, we found that modeled transient storage metrics (i.e., tstor, storage zone exchange rate (αOTIS), and hydraulic retention (Rh)) correlated better with channel hydraulic descriptors such as f and ω than they did with Q or channel slope. Our results indicate that Q is the first-order control on transient storage dynamics of these streams, and that f and ω are two relatively simple measures of channel hydraulics that may be important metrics for predicting the response of transient storage to perturbations in discharge and morphology in a given stream

    Hydraulic & Design Parameters in Full-Scale Constructed Wetland & Treatment Units: Six Case Studies

    Get PDF
    The efficiency of pond and constructed wetland (CW) treatment systems, is influenced by the internal hydrodynamics and mixing interactions between water and aquatic vegetation. In order to contribute to current knowledge of how emergent real vegetation affects solute mixing, and on what the shape and size effects are on the mixing characteristics, an understanding and quantification of those physical processes and interactions was evaluated. This paper presents results from tracer tests conducted during 2015-2016 in six full-scale systems in the UK under different flow regimes, operational depths, shapes and sizes, and in-/outlet configurations. The aim is to quantify the hydraulic performance and mixing characteristics of the treatment units, and to investigate the effect of size and shape on the mixing processes. Relative comparison of outlet configuration, inflow conditions, and internal features between the six different treatment units showed variations in residence times of up to a factor of 3. A key outcome of this study, demonstrated that the width is a more important dimension for the efficiency of the unit compared to the depth. Results underlined the importance of investigating hydrodynamics and physics of flow in full-size units to enhance treatment efficiency and predictions of water quality models

    Voronoi Tessellation Captures Very Early Clustering of Single Primary Cells as Induced by Interactions in Nascent Biofilms

    Get PDF
    Biofilms dominate microbial life in numerous aquatic ecosystems, and in engineered and medical systems, as well. The formation of biofilms is initiated by single primary cells colonizing surfaces from the bulk liquid. The next steps from primary cells towards the first cell clusters as the initial step of biofilm formation remain relatively poorly studied. Clonal growth and random migration of primary cells are traditionally considered as the dominant processes leading to organized microcolonies in laboratory grown monocultures. Using Voronoi tessellation, we show that the spatial distribution of primary cells colonizing initially sterile surfaces from natural streamwater community deviates from uniform randomness already during the very early colonisation. The deviation from uniform randomness increased with colonisation — despite the absence of cell reproduction — and was even more pronounced when the flow of water above biofilms was multidirectional and shear stress elevated. We propose a simple mechanistic model that captures interactions, such as cell-to-cell signalling or chemical surface conditioning, to simulate the observed distribution patterns. Model predictions match empirical observations reasonably well, highlighting the role of biotic interactions even already during very early biofilm formation despite few and distant cells. The transition from single primary cells to clustering accelerated by biotic interactions rather than by reproduction may be particularly advantageous in harsh environments — the rule rather than the exception outside the laboratory
    • …
    corecore