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Abstract: CO2 that is injected into a storage reservoir can leak in dissolved form because of 20 

brine displacement from the reservoir, which is caused by large-scale groundwater motion. 21 

Simulations of the reactive transport of leaking CO2aq along a conducting fracture in a clay-22 

rich caprock are conducted to analyze the effect of various physical and geochemical 23 

processes. Whilst several modelling transport studies along rock fractures have considered 24 

diffusion as the only transport process in the surrounding rock matrix (diffusive transport), 25 

this study analyzes the combined role of advection and dispersion in the rock matrix in 26 

addition to diffusion (advection-dominated transport) on the migration of CO2aq along a 27 

leakage pathway and its conversion in geochemical reactions. A sensitivity analysis is 28 

performed to quantify the effect of fluid velocity and dispersivity. Variations in the porosity 29 

and permeability of the medium are observed in response to calcite dissolution and 30 

precipitation along the leakage pathway. We observe that advection and dispersion in the rock 31 

matrix play a significant role in the overall transport process. For the parameters that were 32 

used in this study, advection-dominated transport increased the leakage of CO2aq from the 33 

reservoir by nearly 305%, caused faster transport and increased the mass conversion of CO2aq 34 

in geochemical reactions along the transport pathway by approximately 12.20% compared to 35 

diffusive transport.  36 

 37 

Keywords: Reactive transport, Advection dominated transport, Diffusive transport, CO2-38 

saturated brine leakage, Transport in fractures, Rock matrix, Calcite kinetic reaction 39 

40 
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1. Introduction 41 

CO2 storage in geological formations is a method to slow the atmospheric 42 

accumulation of greenhouse gases (Holloway, 2005; Middleton et al., 2012). 43 

Environmental hazards that are related to geological CO2 storage are associated with 44 

its potential leakage from storage reservoirs (Stone et al., 2009; Haugan and Joos, 45 

2004). The leakage risk is the greatest when the injected CO2 remains as a supercritical 46 

free-phase (CO2) in the reservoir because of its lower density than the resident fluid (Pruess, 47 

2006a, 2006b). However, the leakage risk diminishes with time because of the progressive 48 

dissolution of supercritical CO2 in the formation fluid (IPCC, 2005). Upon the complete 49 

dissolution of CO2 in the formation fluid (over 10,000 years), the leakage risk is only 50 

associated with the dissolved phase (CO2aq) (Bachu et al., 1994). 51 

Recently, a relatively safer method of CO2 geological sequestration has been 52 

investigated, in which brine that carries CO2aq is injected into the reservoir rather than 53 

supercritical CO2 (Aradóttir et al., 2012; Gislason and Oelkers, 2014). The downward 54 

movement of this brine that carries CO2aq is expected because the injected fluid is 55 

denser than the resident one. This mode of sequestration exhibits relatively faster and 56 

higher consumption of CO2aq through mineral trapping (Aradóttir et al., 2012). 57 

However, large-scale groundwater motion may displace the brine from the reservoir, 58 

creating an associated risk of CO2aq leakage (Bachu et al., 1994; IPCC, 2005; Gaus, 59 

2010).  60 

The transport of CO2aq may occur through a combination of processes, including advection, 61 

dispersion, and diffusion (Bachu et al., 1994). In some cases, fractures or faults may serve as 62 

the main leakage pathways (Grisak and Pickens, 2007). Leaking CO2aq may undergo various 63 

physical and geochemical interactions with the rock formation. Mass exchange between the 64 

conducting fracture and the rock matrix, sorption, and geochemical reactions may immobilize 65 
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solute species in the fractured rocks (Neretnieks, 1980; Cvetkovic et al., 1999; Xu et al., 2001; 66 

Bodin et al., 2003). Low-pH brine that carries CO2aq may potentially undergo various 67 

geochemical reactions with its associated conversion through calcite dissolution or 68 

precipitation reactions (Dreybrodt et al., 1996; Kaufmann and Dreybrodt, 2007; Dreybrodt et 69 

al., 1997). Variations in the medium’s porosity and permeability may result from mineral 70 

dissolution or precipitation because of geochemical interactions with leaking CO2-saturated 71 

brine. For example, the fast dissolution of carbonate minerals may widen the existing flow 72 

paths (Andreani et al., 2008; Gaus, 2010; Ellis et al., 2011(a, b)).  73 

Gherardi et al. (2007) analyzed the geochemical interactions of leaking CO2 and associated 74 

brine that carries CO2aq by means of numerical studies and reported porosity variations near 75 

the reservoir-caprock interface, which are mainly related to calcite mineral reactions. In an 76 

experimental study, Andreani et al. (2008) reported a 50% increase in the medium’s porosity 77 

in close proximity of the fracture because of calcite dissolution from cyclic flows of CO2 and 78 

CO2-saturated brine. Noiriel et al. (2007) examined the effects of acidic water in a flow-79 

through experiment and reported the faster dissolution of carbonate minerals compared to clay 80 

minerals in the fracture. Ellis et al. (2011a) performed a seven-day experiment to study the 81 

geochemical evolution of flow pathway in fractured carbonate caprock because of leaking 82 

CO2aq-carrying brine. These authors reported an increase in fracture apertures because of the 83 

preferential dissolution of calcite mineral. Ellis et al. (2011b) reported a flow-through 84 

experiment of acidic brine in fractured carbonate caprock (over 90% of the bulk rock 85 

composed of calcite and dolomite), which increased the fracture apertures close to the inlet 86 

boundary because of preferential calcite dissolution. 87 

Peters et al. (2014) suggested including the complex geochemical interactions of CO2-88 

saturated brine with mineral calcite in reactive transport models to investigate the 89 

permeability evolution of flow pathways in caprock. Nogues et al. (2013) suggested 90 
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disregarding minerals such as kaolinite, anorthite, and albite in geochemical models that 91 

involve the fate of CO2-saturated water whenever carbonate minerals are abundant. Several 92 

authors conceptualized solute transport in a fracture-matrix system as a dual-domain model; 93 

transport in fractures occurs through advection, dispersion and diffusion, whereas diffusion 94 

alone is considered in the matrix (Steefel and Lichtner, 1998a, 1998b; Novak, 1993, 1996; 95 

Ahmad et al., 2015).  96 

In this study, we consider the presence of an altered rock matrix zone (where advection and 97 

dispersion may not be negligible) that surrounds a fracture and how these processes affect the 98 

reactive transport of CO2-saturated brine that is leaking along this fracture-matrix system. The 99 

velocity fields in the fracture and rock matrix are modelled by Brinkman equations while 100 

considering the time- and space-dependent variations in porosity and permeability that are 101 

caused by the dissolution and precipitation of calcite. Various transport scenarios are 102 

simulated for a period of 500 years to analyze the significance of adding advection and 103 

dispersion into the rock matrix compared to diffusion alone (diffusive transport) on the fate of 104 

leaking CO2aq and its conversion in geochemical reactions along the leakage pathway. A 105 

comparative analysis between various reactive transport scenarios is presented in terms of 106 

variations in the medium’s porosity, CO2aq leakage fluxes from the reservoir, the retention of 107 

CO2aq because of mass that is stored in aqueous and adsorbed states, and CO2aq that is 108 

converted in geochemical reactions along the leakage pathway. A sensitivity analysis is also 109 

performed to determine the significance of the fluid velocity and dispersivity. 110 

2. Model description  111 

The formulation of the reactive transport problem involves a series of mass balance 112 

and momentum equations combined with constitutive thermodynamic relationships. 113 

The reactions that are considered in the study are displayed in Table 1. Reactions (R0)-114 
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(R4) were considered to be fast and modelled as in equilibrium, whereas the calcite 115 

mineral reaction (R5) was considered a slow (kinetically controlled), reversible 116 

reaction. Reaction (R0) represents the equilibrium between supercritical CO2 and 117 

CO2aq and was only included in the batch geochemical models but excluded in the 118 

subsequent reactive transport modelling. The solubility of CO2 in the fluid (reaction 119 

(R0)) was based on the relationships that were developed by Duan and Sun (2003) and 120 

later modified by Duan et al. (2006). This solubility model is valid for a wide range of 121 

pressures, temperatures, and ionic strengths. The equilibrium constants for remaining 122 

reactions (R1)-(R5) were obtained from the LLNL thermo database (Delany and 123 

Lundeen, 1990), the default thermodynamic database for The Geochemist’s 124 

Workbench® (GWB), an integrated geochemical modelling package. Linear 125 

interpolation was used to compute the equilibrium constants of the reactions at the 126 

temperature that was used in the study. The activity coefficient of CO2aq was computed 127 

from the model that was presented by Duan and Sun (2003). The B-dot model, an 128 

extension of the Debye-Hückel equation, was used to compute the activity coefficients 129 

of the involved aqueous species (Bethke, 2008). 130 

Table 1. Chemical reactions that were considered for the CaCO3-H2O-CO2 system. 131 
No. Reaction 
(R0) CO2g↔CO2aq 

(R1) H2O+CO2aq↔H++HCO3
- 

(R2) H2O↔H++OH- 

(R3) HCO3
-↔H++CO3

2- 

(R4) Na++HCO3
-↔NaHCO3aq 

(R5) CaCO3+H+↔Ca2++HCO3
- 

 132 
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2.1. Model domain 133 

Fig. 1 presents the schematic of a CO2 storage reservoir that is overlain by a clay-rich 134 

caprock with a vertical conducting fracture. The domain involves a conducting fracture 135 

that is surrounded by a less-permeable rock matrix. 𝑊𝑊𝑓𝑓 is the half-width of the fracture 136 

(taken as 1 mm), 𝑊𝑊𝑚𝑚 is the half-width of the rock matrix (50 m), and 𝐿𝐿 is the caprock 137 

length (100 m). The fracture is assumed to be partially filled with porous material 138 

(Wealthall et al., 2001; Wu et al., 2010; Laubach et al., 2010; Liu et al., 2013) and has 139 

an initial porosity of 0.60. The porosity of the rock matrix is taken as 0.12. The lower 140 

boundary of the caprock, and thus the upper boundary of the reservoir, is assumed to 141 

be at a depth of 1040 m below the land surface. The leaking CO2-saturated brine from 142 

the reservoir enters the transport domain from the bottom inflow boundary, which 143 

comprises a fracture and rock matrix, and exits through the top (open) boundary. 144 

Continuity conditions for the solute and fluid mass are applied at the fracture-matrix 145 

interface. Symmetry with no-flow conditions are assumed at the left (center of the 146 

fracture) and right (center of rock matrix) boundaries. 147 

 148 

Figure 1. Schematic of the transport domain (clay-rich caprock with a vertical conducting 149 
fracture) that overlies the CO2 storage reservoir. 150 
 151 
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2.2. Reactive transport of aqueous species 152 

The transport of aqueous species is defined by the following system of equations, which are 153 

written in terms of the chemical component species (COMSOL; Ahmad et al., 2015): 154 

𝐑𝐑𝐟𝐟𝜃𝜃
𝜕𝜕𝐮𝐮
𝜕𝜕𝜕𝜕

+ �1 − 𝐊𝐊𝐝𝐝𝜌𝜌𝑝𝑝�𝐮𝐮
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− ∇ ∙ [(𝐃𝐃𝐃𝐃 + 𝐃𝐃𝐞𝐞)∇𝐮𝐮] + ∇ ∙ (𝐯𝐯𝐮𝐮) = 𝜃𝜃𝐫𝐫𝐤𝐤𝐤𝐤𝐤𝐤   (1) 155 

𝐑𝐑𝐟𝐟 = 1 + 𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝜕𝜕

𝐊𝐊𝐝𝐝  (1b) 156 

where 𝐮𝐮 (x,y,t) is the vector of the concentration [mol/(kg water)] of the component 157 

species; 𝐑𝐑𝐟𝐟 (x,y,t) is a diagonal matrix of the retardation factor, which considers 158 

sorption on the surface of the immobile mineral phases; 𝐊𝐊𝐝𝐝 (x,y,t) is a diagonal matrix 159 

where the elements include the sorption partition coefficients of the component species 160 

[m3/kg]; 𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (1 − 𝜃𝜃)𝜌𝜌𝑝𝑝 is the bulk density [kg/m3] of the porous media; 𝜃𝜃(x,y,t) is 161 

the spatially and temporally varying porosity of the medium; 𝜌𝜌𝑝𝑝(x,y,t) is the particle 162 

density [kg/m3]; 𝐃𝐃𝐃𝐃 is the dispersion tensor [m2/s]; 𝐃𝐃𝐞𝐞 = 𝜃𝜃𝐷𝐷𝑏𝑏𝐈𝐈 is the effective 163 

diffusion diagonal tensor [m2/s] with I as the identity tensor; 𝐷𝐷𝑏𝑏 is the diffusion 164 

coefficient of CO2aq in brine; 𝐯𝐯 (x,y,t) is the specific flux [m/s], which is updated in 165 

space and time; and 𝐫𝐫𝐤𝐤𝐤𝐤𝐤𝐤 (x,y,t) [mol/(s-kg water)] is the reaction term, which considers 166 

the consumption or production of component species from geochemical reactions 167 

((R1)-(R5) in Table 1). The diffusion coefficient of CO2aq in brine is computed at the 168 

pressure and temperature conditions that are used in this study from the relationships 169 

by Al-Rawajfeh (2004) and Hassanzadeh et al. (2008). The computed diffusion 170 

coefficient of CO2aq in brine (3.05×10-9 m2/s) is considered for all the component 171 

species (Gherardi et al., 2007). The dispersion tensor in Eq. (1) is defined as a function 172 

of the dispersivity and the components of the fluid velocity by the following 173 

relationships (Bear, 1972): 174 



9 
 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼𝐿𝐿

𝑣𝑣𝐷𝐷2

|v| + 𝛼𝛼𝑇𝑇
𝑣𝑣𝑦𝑦2

|v|

𝐷𝐷𝐷𝐷𝑦𝑦𝑦𝑦 = 𝛼𝛼𝐿𝐿
𝑣𝑣𝑦𝑦2

|v| + 𝛼𝛼𝑇𝑇
𝑣𝑣𝐷𝐷2

|v|

𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 = 𝐷𝐷𝐷𝐷𝑦𝑦𝐷𝐷 = (𝛼𝛼𝐿𝐿 − 𝛼𝛼𝑇𝑇)
𝑣𝑣𝐷𝐷𝑣𝑣𝑦𝑦
|v|

                      (2) 

where 𝛼𝛼𝐿𝐿 and 𝛼𝛼𝑇𝑇 are the longitudinal and transverse dispersivity, respectively.  175 

The transport Eq. (1) is written in terms of the component species (𝐮𝐮), which are linear 176 

combinations of aqueous species that are unaffected by equilibrium reactions. The 177 

methodology of Saaltink et al. (1998) allows us to express the mass conservation of 178 

aqueous species and write the source/sink terms (𝐫𝐫𝐤𝐤𝐤𝐤𝐤𝐤) in terms of the chemical 179 

components. The concentration of aqueous species at every node in the computational 180 

domain is then computed by solving the algebraic equations that relate the components 181 

and aqueous species (speciation process, see Appendix A). In this study, eight aqueous 182 

chemical species in the reaction system ((R1) to (R5) in Table 1) are transformed into 183 

four component species. Therefore, 𝐮𝐮 is a vector of size 4 and 𝐑𝐑𝐟𝐟 and 𝐊𝐊𝐝𝐝 are matrices 184 

of size 4×4. Eq. (1) is a system of nonlinear partial differential equations in which the 185 

variables 𝜃𝜃, 𝜌𝜌𝑝𝑝, and 𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, the matrices 𝐑𝐑𝐟𝐟 and 𝐊𝐊𝐝𝐝 and the vector 𝐫𝐫𝐤𝐤𝐤𝐤𝐤𝐤 are nonlinear 186 

functions of the local concentration of the component species (𝑢𝑢).  187 

2.3. Mass conservation of calcite mineral 188 

The mass conservation of calcite mineral that undergoes kinetic reaction in the 189 

transport domain (fracture and rock matrix) is modelled by using the following 190 

ordinary differential equation (ODE): 191 

𝜕𝜕𝑐𝑐𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝜕𝜕𝜕𝜕

= −𝜃𝜃𝜌𝜌𝑏𝑏𝑟𝑟𝑚𝑚    (3) 192 
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where 𝑐𝑐𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (x, y, t) is the concentration of mineral calcite per unit bulk volume 193 

[mol/m3], and the reaction term 𝑟𝑟𝑚𝑚 (x, y, t) represents the consumption (dissolution) or 194 

production (precipitation) of calcite [mol/(s-kg water)]. The initial mineral 195 

concentration (𝑐𝑐𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) values are computed to be 3142.03 and 6912.46 mol/m3 in the 196 

fracture and the rock matrix, respectively, based on the corresponding initial volume 197 

fraction of calcite (Table 2). 198 

Table 2. Caprock mineralogical composition in the fracture and the rock matrix. 199 
Mineral Mineral volume fraction 

in unaltered rock 
(Gherardi et al., 2007) 

Mineral volume 
fraction in the fracture 
for 0.60 porosity 

Mineral volume 
fraction in the rock 
matrix for 0.12 porosity   

Calcite 0.290 0.116 0.255 
Dolomite 0.040 0.016 0.035 
Quartz 0.200 0.080 0.176 
Illite 0.020 0.008 0.018 
K-feldspar 0 0 0 
Chlorite 0.060 0.024 0.053 
Albite 0 0 0 
Kaolinite 0.050 0.020 0.044 
Na-smectite 0.150 0.060 0.132 
Muscovite 0.190 0.076 0.1672 
 200 

2.4. Mineral kinetic reaction 201 

The mineral kinetic reaction (𝑟𝑟𝑚𝑚) in Eq. (3) is defined in terms of the species concentration 202 

and mineral reactive surface area (Lasaga, 1994):  203 

𝑟𝑟𝑚𝑚 = 𝑘𝑘𝑚𝑚𝐴𝐴𝑚𝑚[1 − 𝛺𝛺𝑚𝑚]   (4) 204 

where 𝑘𝑘𝑚𝑚 is the temperature-dependent kinetic rate constant of the mineral [mol/(s-m2)] and 205 

𝐴𝐴𝑚𝑚 is the reactive surface area of the mineral [m2/(kg water)], which is updated in time and 206 

space during the modeling process. The term 𝛺𝛺𝑚𝑚 = 𝑄𝑄𝑚𝑚/𝐾𝐾𝑒𝑒𝑒𝑒 is the saturation state of calcite, 207 

where 𝑄𝑄𝑚𝑚 represents the calcite ion activity product, and 𝐾𝐾𝑒𝑒𝑒𝑒 is the equilibrium constant for 208 
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the mineral reaction. The mineral dissolves in the solution if the saturation state of the brine 209 

solution with respect to the mineral is less than unity and precipitates if 𝛺𝛺𝑚𝑚 > 1. The 210 

temperature dependence of the kinetic rate constant (𝑘𝑘𝑚𝑚) of the mineral is described by the 211 

Arrhenius equation (Lasaga, 1984): 212 

𝑘𝑘𝑚𝑚  = 𝑘𝑘25 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝐸𝐸𝑎𝑎
𝑅𝑅
�1
𝑇𝑇
− 1

298.15
��    (5) 213 

where 𝑅𝑅 (= 8.314 J/(mol-K) is the gas constant; 𝑇𝑇 is the temperature [K]. 𝐸𝐸𝑎𝑎 is the 214 

activation energy of calcite, and 𝑘𝑘25 is a reaction constant, which are set to 41.87 215 

KJ/mol and 1.60×10-9 mol/(s-m2), respectively, at 25°C (Svensson and Dreybrodt, 216 

1992).  217 

2.5. Mineral reactive surface area 218 

The geometric approach is adopted to calculate the mineral reactive surface from the number 219 

of mineral grains (Johnson et al., 2004; Marini, 2007). The initial mineral reactive surface 220 

area (𝐴𝐴𝑚𝑚) values are calculated to be 3.52 and 38.67 m2/(kg water) in the fracture and rock 221 

matrix, respectively, based on the initial volume fractions of calcite in Table 2. The mineral 222 

kinetic reaction causes variations in the number of mineral grains and, thus, in the reactive 223 

surface area. The following relationship models the variations in the reactive surface area of 224 

the mineral: 225 

𝐴𝐴𝑚𝑚 = 0.1 � 𝐴𝐴𝑔𝑔
𝜕𝜕𝜌𝜌𝑏𝑏𝑉𝑉𝑔𝑔

� �𝑀𝑀𝑀𝑀𝑐𝑐𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�   (6) 226 

where 𝐴𝐴𝑔𝑔 and 𝑀𝑀𝑔𝑔 are the physical surface area and volume of a mineral grain, respectively 227 

(assumed to be spherical with a radius of 1.65×10-5 m); 𝑀𝑀𝑀𝑀 is the molar volume of the 228 

mineral; and 𝑐𝑐𝑚𝑚,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the concentration of the mineral, which varies in time and space 229 
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because of the mineral kinetic reaction (3). The mineral reactive surface area is set to 10% of 230 

its computed physical surface area (Johnson et al., 2004). 231 

2.6. Velocity field for the transport system 232 

The velocity field in the fracture and rock matrix is defined by the Brinkman equations, 233 

where flow in porous media is described by a combination of the mass and momentum 234 

balances: 235 

𝜕𝜕(𝜕𝜕𝜌𝜌𝑏𝑏)
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝑏𝑏𝐯𝐯) = 0  (7) 236 

𝜌𝜌𝑏𝑏
𝜕𝜕
�𝜕𝜕𝐯𝐯
𝜕𝜕𝜕𝜕

+ (𝐯𝐯 ∙ ∇) 𝐯𝐯
𝜕𝜕
� = −∇𝑒𝑒 + ∇ ∙ �𝜇𝜇𝑏𝑏

𝜕𝜕
�(∇𝐯𝐯+ (∇𝐯𝐯)𝑇𝑇) − 2

3
(∇ ∙ 𝐯𝐯)𝐈𝐈�� − �𝜇𝜇𝑏𝑏

𝜅𝜅
� 𝐯𝐯 + 𝐅𝐅       (8) 237 

where 𝜌𝜌𝑏𝑏 is the density [kg/m3] and 𝜇𝜇𝑏𝑏 is the dynamic viscosity [kg/(m-s)] of CO2-238 

saturated brine; 𝑒𝑒 is the pressure [Pa]; and 𝜅𝜅 is the permeability of the porous medium 239 

[m2]. Gravity is included through the force term (𝑭𝑭 = −𝜌𝜌𝑏𝑏𝐠𝐠), where 𝐠𝐠 is the 240 

gravitational acceleration vector [9.81 m/s2]. The brine density and viscosity are equal 241 

to 1000 kg/m3 and 6.27×10-4 kg/(m-s), respectively. The viscosity of the brine is 242 

computed from the model by Mao and Duan (2009) at 45°C and 105×105 Pa 243 

(representing conditions at the lower boundary of the domain, which is assumed to be 244 

at a depth of 1040 m below the surface). The Brinkman equations expand Darcy’s law 245 

by including an additional term that considers viscous transport in the momentum 246 

equation while treating both the pressure gradient and flow velocity as independent 247 

vectors. Popov et al. (2009) found that the Stokes-Brinkman equation can represent 248 

porous media that is coupled to free flow regions such as fractures, vugs, and caves, 249 

including material fill-in and suspended solid particles. The Brinkman equation is 250 

numerically attractive because it defines the flow field in two regions (free flow and 251 

porous media) by using only a single system of equations instead of a two-domain 252 
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approach (Gulbranson et al., 2010). The validity of the Brinkman equations in 253 

COMSOL for modelling flow in porous media has been reported in several works 254 

(e.g., Sajjadi et al., 2014; Chabonan et al., 2015; Golfier et al., 2015; Basirat et al., 255 

2015). 256 

2.7. Medium’s porosity 257 

 The variations in the porosity of the porous medium from mineral dissolution and 258 

precipitation are modelled in time and space (in fracture and rock matrix) based on the 259 

updated volume fraction of the calcite mineral through the following relationship: 260 

𝜃𝜃 = 1 − 𝑀𝑀𝐹𝐹𝑟𝑟𝑟𝑟𝑐𝑐𝑏𝑏,𝑝𝑝            (9) 261 

where 𝑀𝑀𝐹𝐹𝑟𝑟𝑟𝑟𝑐𝑐𝑏𝑏,𝑝𝑝 = ∑ 𝑀𝑀𝐹𝐹𝑚𝑚,𝑝𝑝𝑚𝑚  is the summation of the volume fractions of all the minerals 262 

forming the rock, and 𝑀𝑀𝐹𝐹𝑚𝑚,𝑝𝑝 = 𝑀𝑀𝑚𝑚,𝑝𝑝/𝑀𝑀𝑟𝑟𝑟𝑟𝑐𝑐𝑏𝑏,𝑝𝑝 [-] represents the volume fraction (ratio of 263 

the mineral volume to the total bulk volume) of each mineral. Some numerical 264 

restrictions are applied (Xu et al., 2014): (i) the minimum threshold value of the 265 

mineral concentration is set to 1×10-7 mol/m3 to avoid the complete dissolution and 266 

corresponding disappearance of the mineral from the domain, and (ii) the minimum 267 

porosity of the medium is set to 1×10-3 to stop any further mineral precipitation below 268 

this value. 269 

2.8. Medium’s permeability 270 

The medium’s initial permeability is calculated by using the Kozeny-Carman relationship 271 

(e.g., Bear and Chang, 2010):  272 

𝜅𝜅0 = 𝐶𝐶 𝜕𝜕03

(1−𝜕𝜕0)2�𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑏𝑏,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�
2   (10) 273 
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where 𝐴𝐴𝑟𝑟𝑟𝑟𝑐𝑐𝑏𝑏,𝑆𝑆𝑆𝑆𝐴𝐴𝑉𝑉  is the specific surface area of the solid rock per unit volume of the 274 

solid rock [m2/m3], which depends on the mineral composition of the porous media; 𝐶𝐶 275 

is a coefficient that equals 0.2; and 𝜃𝜃0 is the initial porosity of the medium. The initial 276 

estimated permeability values are 2.24×10-10 m2 in the conducting fracture and 277 

3.71×10-13 m2 in the rock matrix according to the initial porosities of 0.60 and 0.12 and 278 

Eq. (10).  279 

Mineral dissolution or precipitation changes the medium’s porosity and permeability. The 280 

medium’s permeability is updated in time and space by using the Kozeny-Carman 281 

relationship (Lai et al., 2014; Xu et al., 2014): 282 

𝜅𝜅 = 𝜅𝜅0
(1−𝜕𝜕0)2𝜕𝜕3

(1−𝜕𝜕)2𝜕𝜕0
3    (11) 283 

2.9. Sorption of mobile species 284 

Different minerals have shown a capacity to adsorb CO2 (Santschi and Rossi, 2006; Fujii et 285 

al., 2010; Tabrizy et al., 2013; Heller and Zoback, 2014). Santschi and Rossi (2006) reported 286 

that dissolved CO2 adsorbs onto calcite mineral surfaces through the formation of an 287 

intermediate species [Ca(OH)(HCO3)], with a partition coefficient of 6.6×10-2 m3/kg. In their 288 

experimental study, Fujii et al. (2010) observed the reversible nature of the sorption of CO2 289 

onto rocks and minerals at pressure and temperature conditions that are relevant to CO2 290 

geological storage. Heller and Zoback (2014) observed the lowest CO2 adsorption capacity for 291 

“Eagle Ford 127” clay, which mainly consists of calcite (80%). From their study the values of 292 

partition coefficient were deduced as 7.39×10-4 m3/kg and 3.33×10-3 m3/kg for “Eagle Ford 293 

127” and “Montney” clay types respectively at a pressure of 105×105 Pa. 294 

In this study a value of 2.50x10-4 m3/kg was used as a partition coefficient that is lower than 295 

the values reported by Santschi and Rossi (2006) and by Heller and Zoback (2014). The 296 
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reason is that these authors used crushed rock in their experiments, whereas this study deals 297 

with intact rock, thus with smaller reactive surface areas. Additionally, we use the same 298 

partition coefficient for all the mobile species because of the large uncertainty in the sorption 299 

properties and complex geochemical interactions of all the species and to simplify the 300 

analysis.  301 

2.10. Initial and boundary values 302 

The initial pressure in the domain is defined as the hydrostatic pressure with a 303 

subsurface pressure gradient of 1×104 Pa/m (Pruess, 2008). The pressures equal 304 

105×105 Pa at the bottom and 95×105 Pa at the top for this gradient and an atmospheric 305 

pressure of 1×105 Pa, assuming that the domain is located at a depth of 1040 m below 306 

the land surface. In the base-case transport scenarios, an excess pressure of 71.63 Pa in 307 

addition to the prevailing hydrostatic pressure is applied at the bottom boundary to 308 

obtain fluid Darcy velocities of 10 and 2×10-2 m/year in the conducting fracture and 309 

rock matrix, respectively. These velocities show a combined Darcy velocity of 0.0202 310 

m/year for the fracture plus the matrix system. This velocity falls in the range for 311 

regional-scale Darcy velocities of 1 to 10 cm/year, which are measured in a number of 312 

sedimentary basins (Bachu et al., 1994).  313 

The initial water chemistry in the reservoir and transport domain (clay-rich caprock) is 314 

obtained from the background Batch Geochemical Modelling (BGM). The background BGM 315 

is performed at a temperature of 45°C and CO2 partial pressure of 1×103 Pa (Xu et al., 2005) 316 

and considers 0.5 M of NaCl solution until full equilibrium is reached (with respect to all the 317 

reactions in Table 1). The chemistry of the leaking CO2-saturated brine is obtained from CO2 318 

dissolution modelling that is performed at a temperature of 45°C and CO2 partial pressure of 319 

105×105 Pa (representing a depth of 1040 m below the surface) for a 0.5 M NaCl solution. 320 
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Table 3 displays the initial water chemistry in the reservoir and clay-rich caprock (column 2) 321 

and that of the leaking CO2-saturated brine in the reservoir (column 3). The compositions of 322 

the initial and boundary brines in the modelling process, written in terms of chemical 323 

components, are presented in Table 4. The composition of leaking brine at the bottom inflow 324 

boundary is set to remain constant during the entire simulation time, assuming that the brine 325 

in the reservoir always stays in equilibrium with calcite.  326 

 327 
Table 3. Initial prevailing water chemistry in the reservoir and clay-rich caprock (column 2) 328 
and the chemistry of CO2-saturated brine in the reservoir (column 3). 329 
Pressure and temperature 45°C and 1×103 Pa 45°C and 105×105 Pa 

 Aqueous species c [mol/(kg water)] c [mol/(kg water)] 
HCO3

- 3.33×10-3 6.04×10-2 
Na+ 4.99×10-1 4.89×10-1 
Cl- 5.00×10-1 5.00×10-1 
Ca2+ 2.01×10-3 3.58×10-2 
CO2aq 1.98×10-4 1.08 
H+ 5.44×10-8 1.67×10-5 
OH- 1.29×10-6 4.25×10-9 
CO3

2- 1.43×10-5 8.85×10-7 
NaHCO3aq 6.63×10-4 1.13×10-2 
pH 7.26 4.78 
 330 

Table 4. Initial (sub-index 0) and boundary conditions (sub-index bc) in terms of the chemical 331 
components. The translation of aqueous species to component species and viceversa can be 332 
seen in Appendix A. 333 
Component  
species 

Concentration  
[mol/(kg water)] 

Component  
species 

Concentration  
[mol/(kg water)] 

uHCO3,0 4.02×10-3 uHCO3,bc 7.17×10-2 
uNa0 5.00×10-1 uNabc 5.00×10-1 
uCa0 2.01×10-3 uCabc 3.58×10-2 
uCO2,0 1.82×10-4 uCO2,bc 1.08 
 334 
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2.11. Various reactive transport scenarios 335 

Various reactive transport scenarios (Table 5) for leaking CO2-saturated brine are 336 

performed to analyze the effects of different transport processes on the mobility and 337 

retention of CO2aq, as well as the variations in the medium’s porosity and permeability 338 

along the leakage pathway driven by geochemical reactions. The transport modelling 339 

of leaking CO2-saturated brine is performed for a period of 500 years.  340 

2.11.1. Base-case transport scenarios 341 

We denote scenarios 1, 2, 3 and 4 as the base cases, aimed at investigating the roles of 342 

advection and dispersion in the rock matrix (advection-dominated transport) compared 343 

to diffusion alone (diffusive transport). In all cases, advection, diffusion and dispersion 344 

are considered to occur in the fracture. In scenarios 1 and 3, the mass transport in the 345 

rock matrix is modelled by considering that the only active transport process is 346 

diffusion, while scenarios 2 and 4 include advection and dispersion alongside diffusion 347 

in the rock matrix. Sorption is included in scenarios 3 and 4. The longitudinal and 348 

transverse dispersivity values for transport scenarios 1 and 3 are 10 m and 1 m, 349 

respectively, in the fracture and zero in the rock matrix. The same longitudinal and 350 

transverse dispersivity values are used in transport scenarios 2 and 4, but now both in 351 

the fracture and the rock matrix. The dispersivity values are related to the length scale 352 

of the transport domain, as reported by Gelhar et al. (1992). 353 

 354 

 355 

 356 

 357 
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Table 5. Various base-case reactive transport scenarios (1, 2, 3 and 4) and the reactive 358 
transport scenarios (5, 6, 7 and 8) in the sensitivity analysis. 359 
Reactive 
transport 
scenario 

Partition 
coefficient 

[m3/kg] 

Initial 
velocity 
[m/year] 

Longitudinal 
dispersivity in 

fracture / 
matrix [m] 

Advection in 
the matrix 

Excess 
pressure at 
the bottom 

[Pa] 
1 0 10 10 / 0 N 71.625 
2 0 10 10 / 10 Y 71.625 
3 2.5×10-4 10 10 / 0 N 71.625 
4 2.5×10-4 10 10 / 10 Y 71.625 
5 0 5 10 / 10 Y 20.750 
6 0 15 10 / 10 Y 122.50 
7 0 10 20 / 20 Y 71.625 
8 0 10 30 / 30 Y 71.625 

 360 

2.11.2. Sensitivity analysis 361 

Sensitivity analysis is performed to investigate the roles of fluid velocity and 362 

dispersivity on the reactive transport of CO2aq along the leakage pathway. Thus, we 363 

perform additional reactive transport scenarios 5, 6, 7 and 8 (Table 5). Scenarios 5 and 364 

6 involve, respectively, maximum fluid velocities of nearly 5 m/year and 15 m/year at 365 

the bottom (inlet) of the fracture, matching the regional-scale Darcy velocities that are 366 

characteristic of deep sedimentary basins (Bachu et al., 1994). These velocities are achieved 367 

by applying an excess pressure of 20.75 Pa and 122.50 Pa, respectively, in addition to the 368 

prevailing hydrostatic pressure at the bottom boundary. Pressures are kept constant in time, so 369 

that velocities vary in space and time driven by changes in porosity and permeability caused 370 

by mineral reaction. The longitudinal dispersivity values in scenarios 7 and 8 are 20 m 371 

and 30 m, respectively, in both the fracture and the rock matrix. A transverse 372 

dispersivity of 1 m is used in both the fracture and the rock matrix for transport 373 

scenarios 5 to 8 (sensitivity not tested). 374 
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2.12. Methodology of calculating the mass conversion of CO2aq in geochemical reactions 375 

The mass conversion of CO2aq in geochemical reactions in each reactive transport 376 

scenario (Table 5) is calculated by comparing the mass balances with those from 377 

conservative transport scenarios (thus neglecting all the geochemical reactions in Table 378 

1). The mass balance of CO2aq in each scenario is calculated by considering the 379 

cumulative mass that enters the transport domain through the bottom inflow boundary, 380 

the mass that leaves through the top open boundary, and the mass that is stored in the 381 

aqueous and adsorbed states in the transport domain over time. The mass conversion of 382 

CO2aq in geochemical reactions is presented in each reactive transport scenario as a 383 

percentage of the mass inflow as % 𝑚𝑚𝑐𝑐𝑟𝑟𝑐𝑐 = 𝑚𝑚𝑟𝑟𝑟𝑟𝑐𝑐
𝑚𝑚𝑖𝑖𝑐𝑐

100, that is, the ratio between the 384 

cumulative mass conversion of CO2aq in geochemical reactions (𝑚𝑚𝑐𝑐𝑟𝑟𝑐𝑐) and its 385 

cumulative mass inflow (𝑚𝑚𝑖𝑖𝑐𝑐) over time. 386 

2.13. Numerical solution technique 387 

The reactive transport coupled system of equations ((1)-(11)) with the corresponding 388 

initial and boundary conditions is modelled in COMSOL Multiphysics®. The flow and 389 

transport are modelled by adopting a one-domain approach with a single set of 390 

transport equations for the entire domain (fracture plus rock matrix) (Goyeau et al., 391 

2003; Jamet et al., 2009; Tao et al., 2013; Basirat et al., 2015). In this study, we solve 392 

the non-linear system of equations that arises from coupled reactive transport 393 

modelling by using a segregated approach, which sequentially solves the various 394 

physics that are involved. Thus, the solution includes segregated solution steps with 395 

individual custom damping and tolerance. A damped version of Newton’s method is 396 

used in all steps, with damping factors that equal unity. The flow problem (pressure 397 

and velocity field) is solved first (segregated step 1), the transport problem for 398 
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conservative species (components) is next (step 2), followed by the speciation problem 399 

(finding the aqueous species as a function of transport component species) in step 3; 400 

finally, the mass conservation equation of kinetic mineral calcite is solved in step 4. An 401 

implicit non-linear solver that is based on the backward differentiation formula (BDF) 402 

is used for time marching. The Jacobian matrix is updated every iteration to make the 403 

solver more stable. A structured mesh with quadrilateral elements is used as the 404 

numerical grid in the transport domain (fracture plus rock matrix). The mesh is refined 405 

in and near the fracture and towards the bottom inlet boundary (supplementary 406 

material). The complete mesh consists of 16560 quadrilateral elements. A total of 407 

269509 degrees of freedom (DOF) are solved. The average time for solving each of the 408 

reactive transport scenarios is nearly 12 hours on an Intel(R) Core(TM)2 Quad CPU 409 

with RAM of 16 GB. 410 

3. Results 411 

The mixing of leaking CO2-saturated brine with the resident pore waters in the 412 

transport domain (both the fracture and rock matrix in the clay-rich caprock) created a 413 

fluid under-saturated with respect to calcite, thus initiating calcite dissolution near the 414 

bottom inflow boundary. Calcite within the transport domain might dissolve or 415 

precipitate depending on the evolving geochemical conditions during the simulation.  416 

3.1. Base-case reactive transport scenarios 417 

The calcite dissolution and precipitation reactions, which are driven by leaking CO2-418 

saturated brine, caused variations in the medium’s porosity and permeability in space 419 

and time along the transport pathway. Fig. 2a and 2b show the variations in the 420 

porosity and permeability in the rock matrix for the reactive transport scenario 2 after a 421 

simulation time of 500 years. The rock matrix’s porosity increased by nearly 42% from 422 
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the initial value of 0.12 to a value of 0.17, whereas the permeability attained a value of 423 

1.337×10-12 m2 from its initial value of 3.71×10-13 m2. This increase was mostly 424 

concentrated near the bottom inflow boundary because of continued calcite dissolution, 425 

which was driven by leaking CO2-saturated brine. A negligible decrease in porosity 426 

and permeability was observed towards the top of the transport domain along the 427 

conducting fracture, which indicates a small amount of calcite precipitation. 428 

 429 

Figure 2. Variations in the porosity (a) and permeability (b) of the rock matrix in the base-430 
case reactive transport scenario 2 after 500 years. 431 
 432 

3.1.1. Role of advection and dispersion in the rock matrix 433 

Figs. 3, 4 and 5 present the mass of CO2aq that entered the transport domain from the reservoir 434 

through the inflow boundary, its mass conversion in geochemical reactions and percent mass 435 

conversion, respectively, in the various studied reactive transport scenarios. In the advection-436 

dominated transport scenarios 2 and 4, the combination of advection, dispersion and diffusion 437 

transport processes increased the leakage of CO2aq from the reservoir (Fig. 3a, 3b) and mass 438 

conversion during the geochemical reactions (Fig. 4a, 4b) along the transport domain 439 

compared to the corresponding values in diffusive transport scenarios 1 and 3. 440 
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The mass balances of CO2aq in the transport domain in the base-case reactive transport 441 

scenarios 1, 2, 3 and 4 after 500 years are reported in Table 6. This table lists the CO2aq mass 442 

inflows from the reservoir, the mass that was stored in aqueous and adsorbed states, the mass 443 

that was converted in geochemical reactions, and the mass that left the transport domain 444 

through the top open boundary. 445 
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 446 

Figure 3. Mass inflow of CO2aq through the bottom inflow boundary in various reactive 447 
transport scenarios over time: (a) scenarios 1 and 2; (b) scenarios 3 and 4; (c) scenarios 1 and 448 
3; (d) scenarios 2 and 4; (e) scenarios 2, 5 and 6; and (f) scenarios 2, 7 and 8. 449 
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 450 

Figure 4. Mass conversion of CO2aq in various reactive transport scenarios over time: (a) 451 
scenarios 1 and 2; (b) scenarios 3 and 4; (c) scenarios 1 and 3; (d) scenarios 2 and 4; (e) 452 
scenarios 2, 5 and 6; and (f) scenarios 2, 7 and 8. 453 
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 454 

Figure 5. Percentage mass conversion of CO2aq in various reactive transport scenarios over 455 
time; (a) scenarios 1 and 2; (b) scenarios 3 and 4; (c) scenarios 1 and 3; (d) scenarios 2 and 4; 456 
(e) scenarios 2, 5 and 6; and (f) scenarios 2, 7 and 8. 457 
 458 
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The total mass inflow was split in terms of advective, dispersive and diffusive fluxes 459 

through the bottom inflow boundary both at the fracture and in the rock matrix. The 460 

highest mass inflow, mass that was stored in an aqueous state and mass conversion of 461 

CO2aq were associated with the advection-dominated transport scenarios 2 and 4 462 

compared to the values in the corresponding diffusive transport scenarios 1 and 3. 463 

Higher stored mass in an adsorbed state can also be observed in the advection-464 

dominated transport scenario 4 compared to the corresponding diffusive transport 465 

scenario 3. The mass balance errors were less than 0.1% in all the scenarios. 466 

Table 6. CO2aq mass balance [mol] in the base-case reactive transport scenarios 1, 2, 3, and 4 467 
after 500 years. 468 
Reactive transport scenarios Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Total mass that entered the 
domain 5.98×104 5.26×105 1.39×105 5.62×105 

Mass that entered from 
advection (fracture) 5.70×103 5.56×103 6.04×103 5.78×103 

Mass that entered from diffusion 
(fracture) 1.79×100 2.94×10-1 3.85×100 1.68×100 

Mass that entered from 
dispersion (fracture) 3.19×103 5.12×102 7.21×103 3.02×103 

Mass that entered from 
advection (matrix) 0 5.12×105 0 5.12×105 

Mass that entered from diffusion 
(matrix) 5.09×104 4.86×103 1.26×105 2.49×104 

Mass that entered from 
dispersion (matrix) 0 3.12×103 0 1.60×104 

Mass that left the domain 
(fracture) 9.24×10-1 1.69×102 9.14×10-1 9.14×10-1 

Mass that left the domain 
(matrix) 0.00×100 3.32×103 0.00×100 8.65×101 

Mass stored in an aqueous state 5.59×104 5.19×105 2.22×104 9.31×104 
Mass stored in an adsorbed state 0.00×100 0.00×100 1.09×105 4.60×105 
Mass converted in the 
geochemical reactions 3.86×103 4.09×103 7.57×103 8.49×103 

Mass conversion of CO2aq after 
500 years (%) 6.46×100 7.79×10-1 5.45×100 1.51×100 

Error in the mass balance (%) 1.82×10-2 -9.16×10-2 1.97×10-2 1.34×10-2 
 469 
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The mass balance for mineral calcite and Ca2+ and the split for the mass of calcite [mol] and 470 

pore volume [m3] in the fracture and rock matrix in the base-case transport scenarios 1, 2, 3 471 

and 4 after 500 years are presented in Table 7. Calcite dissolution prevailed over precipitation 472 

in the transport domain during the simulations, which implies a decrease in its mass and 473 

increase in the overall pore volume in the fracture and rock matrix. Considering advection in 474 

the rock matrix (scenarios 2 and 4) increased the calcite dissolution, pore volume and mass of 475 

Ca2+ compared to the corresponding diffusive transport scenarios 1 and 3. Moreover, 476 

relatively higher calcite dissolution occurred in the fracture than in the rock matrix compared 477 

to the initial mass of calcite in the fracture and rock matrix because of the higher advective 478 

velocity in the former. Finally, the mass of produced Ca2+ was equal to the mass of dissolved 479 

calcite (except for the mass balance errors of less than 0.14%). 480 

Table 7. Mass balance [mol] of calcite and Ca2+ and increase in the pore volume [m3] in the 481 
transport domain for the base-case reactive transport scenarios (1, 2, 3, and 4) after 500 years. 482 
Reactive transport scenarios Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Mass of dissolved calcite in the fracture 7.26×100 7.33×100 1.24×101 1.36×101 
Decrease in mass in the fracture (%) 2.31×100 2.33×100 3.94×100 4.33×100 
Mass of dissolved calcite in the rock 
matrix 3.81×103 4.07×103 7.58×103 8.36×103 

Decrease in mass in the rock matrix (%) 1.10×10-2 1.18×10-2 2.19×10-2 2.42×10-2 
Total mass of dissolved calcite 3.81×103 4.08×103 7.59×103 8.38×103 
Increase in pore volume in the fracture 2.68×10-4 2.71×10-4 4.57×10-4 5.02×10-4 
Increase in pore volume in the rock 
matrix 1.41×10-1 1.50×10-1 2.80×10-1 3.09×10-1 

Total increase in the pore volume 1.41×10-1 1.51×10-1 2.80×10-1 3.09×10-1 
Mass of produced Ca2+ 3.81×103 4.08×103 7.58×103 8.37×103 
Error in the mass balance (%) -1.03×10-1 -4.75×10-2 1.42×10-1 4.40×10-2 
 483 

Sorption in the transport scenarios 3 and 4 increased the CO2aq leakage from the reservoir 484 

(Fig. 3c, 3d) and mass conversion of CO2aq in the geochemical reactions (Fig. 4c, 4d) in the 485 

transport domain compared to the transport scenarios 1 and 2, which did not consider 486 

sorption. Comparing the sorption scenario-3 with the corresponding no-sorption scenario 1 487 

and the sorption scenario 4 with the no-sorption scenario 2 indicates that sorption almost 488 
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doubled the mass conversion of CO2aq in the geochemical reactions (row 13 of Table 6); 489 

calcite dissolution (row 6 of Table 7), with an associated increase in pore volume (row 9 of 490 

Table 7); and production of Ca2+ (row 10 of Table 7). 491 

Although the advection-dominated transport scenarios 2 and 4 increased the conversion of 492 

CO2aq mass [mol] in the geochemical reactions compared to the corresponding diffusive 493 

transport scenarios 1 and 3, decreasing trends in the percentage mass conversion were 494 

observed (Fig. 4a vs Fig. 5a and Fig. 4b vs Fig. 5b). Similarly, higher CO2aq mass conversion 495 

occurred in the sorption transport scenarios 3 and 4 compared to the corresponding no-496 

sorption transport scenarios 1 and 2, yet decreasing trends were observed for the percent mass 497 

conversion in these scenarios (Fig. 4c vs Fig. 5c and Fig. 4d vs Fig. 5d). This result can be 498 

explained by the variability in the CO2aq mass inflows. 499 

3.2. Sensitivity analysis 500 

3.2.1. Role of velocity magnitude 501 

Different initial fluid velocities prevailed in the fracture and rock matrix because of different 502 

excess pressure at the bottom boundary of the transport domain in scenarios 2, 5, and 6; 503 

velocities then changed during the simulation time due to variations in porosity and 504 

permeability. Mass inflows (Fig. 3e) and CO2aq mass conversion in the reactions (Fig. 4e) 505 

increased with the initial fluid velocity in the transport pathway. However, the percentage of 506 

mass conversion of CO2aq decreased with increasing fluid velocity (Fig. 5e). The mass 507 

conservation indicated that the mass inflow and mass conversion of CO2aq in the geochemical 508 

reactions increased with increasing fluid velocity in the transport domain (Table 6 and 8). 509 

Additionally, the mass of dissolved calcite, the pore volume and the mass production of Ca2+ 510 

increased with increasing fluid velocity in scenarios 2, 5 and 6. 511 

 512 
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Table 8. CO2aq mass balance [mol] for the different reactive transport scenarios 5, 6, 7, and 8 513 
after 500 years. 514 
Reactive transport scenarios Scenario 5 Scenario 6 Scenario 7 Scenario 8 
Total mass that entered the 
domain 2.69×105 7.85×105 5.29×105 5.33×105 

Mass that entered from 
advection (fracture) 2.77×103 8.31×103 5.60×103 5.61×103 

Mass that entered from diffusion 
(fracture) 6.23×10-1 1.89×10-1 3.14×10-1 3.24×10-1 

Mass that entered from 
dispersion (fracture) 5.42×102 4.95×102 1.10×103 1.70×103 

Mass that entered from 
advection (matrix) 2.55×105 7.68×105 5.12×105 5.12×105 

Mass that entered from diffusion 
(matrix) 9.03×103 3.38×103 4.75×103 4.68×103 

Mass that entered from 
dispersion (matrix) 1.45×103 4.85×103 6.11×103 9.04×103 

Mass that left the domain 
(fracture) 4.74×10-1 2.03×103 2.92×102 4.03×102 

Mass that left the domain 
(matrix) 4.32×101 1.35×105 6.26×103 9.40×103 

Mass stored in an aqueous state 2.66×105 6.42×105 5.18×105 5.18×105 
Mass stored in an adsorbed state 0 0 0 0 
Mass converted in the 
geochemical reactions 3.50×103 4.42×103 4.81×103 5.43×103 

Mass conversion of CO2aq after 
500 years (%) 1.30×100 5.63×10-1 9.10×10-1 1.02×100 

Error in the mass balance (%) 5.47×10-3 4.83×10-2 -1.01×10-1 -1.03×10-1 
 515 
Table 9. Mass balance [mol] of calcite and Ca2+ and increase in the pore volume [m3] in the 516 
transport domain for the different transport scenarios 5, 6, 7, and 8 after 500 years. 517 
Reactive transport scenarios Scenario 5 Scenario 6 Scenario 7 Scenario 8 
Mass of dissolved calcite in the fracture 4.65×100 4.88×100 7.43×100 8.54×100 
Decrease in mass in the fracture (%) 1.48×100 1.55×100 2.36×100 2.72×100 
Mass of dissolved calcite in the rock 
matrix 3.48×103 4.43×103 4.80×103 5.40×103 

Decrease in mass in the rock zone 1.01×10-2 1.28×10-2 1.39×10-2 1.56×10-2 
Total mass of dissolved calcite 3.49×103 4.43×103 4.80×103 5.41×103 
Increase in pore volume in the fracture 1.72×10-4 1.80×10-4 2.74×10-4 3.15×10-4 
Increase in pore volume in the rock 
matrix 1.29×10-1 1.63×10-1 1.77×10-1 1.99×10-1 

Total increase in the pore volume 1.29×10-1 1.64×10-1 1.77×10-1 2.00×10-1 
Mass of produced Ca2+ 3.49×103 4.43×103 4.81×103 5.41×103 
Error in the mass balance (%) 6.16×10-3 5.32×10-2 -1.07×10-1 -1.13×10-1 
 518 

 519 
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3.2.2. Role of longitudinal dispersivity 520 

The higher longitudinal dispersivity very slightly increased the mass inflow (5.26×105, 521 

5.29×105 and 5.33×105 mol in scenarios 2, 7 and 8, respectively) (Figs. 3f and 4f; Tables 6 522 

and 8). However, the mass conversion of CO2aq in the geochemical reactions (Fig. 4f) and 523 

percent mass conversion (Fig. 5f) increased with increasing dispersivity. In these scenarios, 524 

the higher quantities of CO2aq that were converted in the geochemical reactions for almost the 525 

same mass inflows resulted in similar trends for CO2aq mass conversion and its percentage of 526 

mass conversion (Figs. 4f and 5f; Table 8). For a given fluid velocity, the mass of dissolved 527 

calcite, the mass of produced Ca2+, and the pore volume increased with the longitudinal 528 

dispersivity (Tables 7 and 9).  529 

3.3. Breakthrough curves of leaking CO2aq 530 

The effects of advection and dispersion in the rock matrix on the transport of leaking CO2aq 531 

are presented in the form of breakthrough curves, which represent its concentration at 10 and 532 

20 m locations from the bottom inlet boundary along the conducting fracture over time (Fig. 533 

6). Fast migration of CO2aq along the leakage pathway was observed in the advection-534 

dominated transport scenarios compared to the diffusive transport scenarios. Fast transport 535 

that was mainly driven by advection increased the CO2aq concentration in the advection-536 

dominated transport scenario 2 compared to the diffusive transport scenario 1 after a travel 537 

distance of 10 and 20 m along the conducting fracture. Additionally, the highest velocity in 538 

scenario 6 resulted in the highest concentration of CO2aq (Fig. 6a and 6c). During earlier 539 

times, the higher dispersivity in scenario 8 increased the concentration of CO2aq (Fig. 6b and 540 

6d). However, the lowest dispersivity value used in scenario 2 resulted in the highest CO2aq 541 

concentration after 67 and 135 years for the 10- and 20-m locations, respectively. This result 542 
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occurred because of the fast spreading and dilution of species concentration that was caused 543 

by higher dispersion along the transport pathway over time in scenario 8.  544 

 545 

Figure 6. Breakthrough curves for CO2aq for various reactive transport scenarios at various 546 
locations along the fracture over time; (a) scenarios 1, 2, 5, and 6 at 10 m from the inflow 547 
boundary; (b) scenarios 1, 2, 7, and 8 at 10 m; (c) scenarios 1, 2, 5, and 6 at 20 m from the 548 
inflow boundary; and (d) scenarios 1, 2, 7, and 8 at 20 m. 549 
 550 

4. Discussion 551 

The role of calcite kinetics in contact with CO2-saturated brine in the reservoir in the presence 552 

of free-phase CO2 in the reservoir has been investigated. For the purpose, two sets of CO2 553 

dissolution modelling have been performed for elevated values of CO2aq in the presence of 554 

free-phase CO2 in the reservoir for calcite was (i) reactive and (ii) non-reactive. The presence 555 
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of calcite kinetics provided buffer and kept pH at a higher value of 4.78 whereas pH settled at 556 

3.56 in the absence of calcite reaction. This added alkalinity caused by calcite dissolution may 557 

shift CO2aq into other ions in solution along the transport domain. Calcite dissolution in the 558 

reactive transport scenarios mainly occurred in close vicinity to the bottom inflow boundary 559 

(Gherardi et al., 2007; Andreani et al., 2008; Ellis et al., 2011b), resulting in the simultaneous 560 

production of Ca2+ and HCO3
-, which brought the brine solution closer to calcite saturation 561 

away from the inflow boundary. The resulting saturation conditions with respect to calcite 562 

stopped any significant calcite dissolution in the rock matrix beyond 0.1 m from the inflow 563 

boundary, and caused mineral precipitation towards the top of the transport domain, mainly 564 

close to the conducting fracture. However, calcite precipitation was too low to have any 565 

significant effect on the decrease in porosity and permeability in the fracture and rock matrix. 566 

In scenario 6, the rock matrix’s porosity attained a value of 0.17 after 500 years at the inflow 567 

boundary but reached a value of 0.15 (the initial one was 0.12) approximately 0.01 m from the 568 

boundary. However, the rock matrix’s porosity close to the fracture was higher than 0.15 up 569 

to a distance of 0.25 m from the inflow boundary in scenario 6. This result can be explained 570 

by the fast transport along the fracture, which caused calcite dissolution to occur over a 571 

relatively longer distance.  572 

Declining trends in the percent mass conversion after some initial times that were observed in 573 

Fig. 5d as compared to Fig. 5c, are related to additional advection in the rock matrix in the 574 

advection-dominated transport scenarios 2 and 4. The percent mass conversion in scenarios 2 575 

and 4 fell off after 2.01×106 s and 1.89×107 s, respectively (Fig. 5a, 5b, and 5d) but continued 576 

to increase in scenarios 1 and 3 (Fig. 5a, 5b, and 5c). Advection in scenarios 2 and 4 increased 577 

the mass inflows at an almost constant rate, whereas the mass inflow decreased with time in 578 

scenarios 1 and 3 due to the decreasing diffusive fluxes across the inflow boundary. Although 579 

the concentration gradients across the inflow boundary kept decreasing over time in all these 580 
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transport scenarios, the diffusive fluxes were the only transport process across the inflow 581 

boundary in the diffusive transport scenarios 1 and 3, which decreased the mass inflow 582 

compared to the corresponding inflows in the advection-dominated transport scenarios 2 and 583 

4. Thus, the higher mass inflow in scenarios 2 and 4 with time created declining trends in 584 

percent mass conversion (Fig. 5a, 5b, and 5d).  585 

The higher observed mass conversion of CO2aq in the geochemical reactions in sorption 586 

scenarios 3 and 4 compared to the corresponding no-sorption scenarios 1 and 2 (Fig. 4c and 587 

4d) were mainly related to (i) the higher mass inflows through the inflow boundary induced 588 

by sorption and, to a lesser extent, (ii) the lower saturation state of calcite in the transport 589 

domain when sorption was included in the simulations. Over time, relatively lower saturation 590 

of calcite (mineral) prevailed in the transport domain in the sorption scenarios 3 and 4 591 

compared to the no-sorption scenarios 1 and 2. The sorption process fixed the mass of Ca2+ 592 

and HCO3
- onto the rock surfaces and lowered the concentration of these species in an 593 

aqueous state. This process lowered the saturation state of calcite in the sorption scenarios 3 594 

and 4, promoting calcite dissolution and thus contributing towards the overall higher CO2aq 595 

mass conversion in the geochemical reactions in these scenarios.  596 

Higher percent mass conversion occurred during earlier times in the no-sorption scenarios 1 597 

and 2 compared to the corresponding sorption scenarios 3 and 4 (Fig. 5c and 5d). This result 598 

mainly occurred because sorption (scenarios 3 and 4) induced relatively higher concentration 599 

gradients across the inflow boundary; thus, higher diffusive fluxes resulted in higher mass 600 

inflows. Sorption fixed the species’ masses in an adsorbed state and reduced their 601 

concentrations in an aqueous state, increasing the concentration gradients and mass inflows 602 

and decreasing the percent mass conversion during these earlier times.  603 



34 
 

This study shows that pH distribution along the transport pathway alone cannot fully predict 604 

the calcite reaction kinetics and the related conversion of CO2aq into other ions; instead the 605 

reactive process is mostly controlled by the saturation state of calcite. As an example, at a pH 606 

of 7.26, the brine was at saturation with respect to calcite and thus no reaction occurred in the 607 

transport domain before leakage of CO2-saturated brine started taking place. On the other 608 

hand, leaking CO2-saturated brine was at a pH of 4.78, and also saturated with respect to 609 

calcite, so again no reaction was driven. It was only the mixing of the two fluids (one 610 

prevailing in the transport pathway and the other one leaking from the reservoir) that brought 611 

the saturation state of calcite below one and caused calcite dissolution, concentrated initially 612 

in the vicinity of the lower leaking boundary. Over time, the calcite reaction zone advanced in 613 

the transport domain; however, due to the increase in Ca+2 and HCO3
- as a result of calcite 614 

dissolution, the saturation state started increasing away from the lower leaking boundary. 615 

Eventually geochemical conditions evolved when saturation state with respect to calcite 616 

reached one; as a consequence, calcite dissolution ceased even though the pH value was 4.78 617 

(representing leaking CO2-saturated brine), much lower than the initial value of 7.26 618 

prevailing in the transport pathway. This shows that the fall in the pH value along the 619 

transport pathway did not fully predict the calcite reaction regimes; instead calcite reactivity 620 

and related conversion of CO2aq was found related to saturation state of calcite in the transport 621 

domain for the modelled leakage scenarios. 622 

We computed the saturation state of calcite in the full domain (fracture plus rock matrix) in 623 

the no-sorption scenarios 1 and 2 and the corresponding sorption scenarios 3 and 4 over a 624 

simulation time of 500 years to further illustrate the role of sorption in maintaining a 625 

relatively lower saturation state of calcite, inducing dissolution. The saturation state of calcite 626 

was computed as its integral over the entire domain and simulation time. Fig. 7 presents the 627 

difference of the saturation state of calcite between the sorption scenarios and the 628 
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corresponding no-sorption scenarios. Except for the very early times (2.34×10-3 year), the 629 

saturation state of calcite remained lower in the sorption scenarios 3 and 4 compared to the 630 

corresponding no-sorption scenarios 1 and 2. The resulting low saturation state of calcite from 631 

sorption increased the conversion of CO2 through the higher dissolution of calcite. 632 

 633 

Figure 7. Difference of the saturation state of calcite (𝝮𝝮m) in the transport domain over time: 634 
between the sorption scenario 3 and the corresponding no-sorption scenario1; and between the 635 
sorption scenario 4 and the corresponding no-sorption scenario 2. 636 
 637 

The steep observed gradients of the percent mass conversion of CO2aq during the early times 638 

in all the reactive transport scenarios are related to the prevailing higher calcite dissolution 639 

reaction rate and associated higher mass conversion of CO2aq relative to the mass inflow 640 

through the bottom inflow boundary. During the earlier times, leaking CO2-saturated brine 641 

induced the lowest saturation of calcite and, thus, the highest calcite dissolution reaction rate 642 

and CO2aq mass conversion. Furthermore, the mass conversion of CO2aq in the geochemical 643 

reactions for all the reactive transport scenarios was well correlated with the calcite 644 

dissolution and associated increase in pore volume in the transport domain over time (Fig. 4 645 

vs Fig. 8). 646 
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 647 

Figure 8. Increase in pore volume within the transport domain from calcite dissolution in 648 
various reactive transport scenarios over time: (a) scenarios 1 and 2; (b) scenarios 3 and 4; (c) 649 
scenarios 1 and 3; (d) scenarios 2 and 4; (e) scenarios 2, 5 and 6; and (f) scenarios 2, 7 and 8. 650 
 651 
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For the same initial fluid velocity at the bottom boundary of the fracture, the highest CO2aq 652 

concentration along the fracture in the advection-dominated transport scenario 2 indicates 653 

lower mass transfer from the conducting fracture into the rock matrix, when compared to that 654 

in the diffusive transport scenario 1 (Fig. 6a, 6b). The fast transport of CO2aq from advection 655 

in the rock matrix in the advection-dominated transport scenario 2 created low concentration 656 

gradients across the fracture-matrix interface that, in turn, decreased the diffusive mass 657 

transfer from the conducting fracture into the rock matrix. 658 

5. Conclusions 659 

This work presents the results of reactive transport simulations of CO2-saturated brine 660 

that leaks along a conducting fracture and a surrounding rock matrix in clay-rich 661 

caprock. The model that was developed here considered the effects of advection, 662 

dispersion and diffusion in both the fracture and rock matrix on the quantities of leaked 663 

CO2aq, the evolution of the medium’s porosity and permeability because of 664 

geochemical reactions, and the conversion of CO2aq in geochemical reactions along the 665 

leakage pathway.  666 

Advection and dispersion in addition to diffusion in the rock matrix increased the 667 

leakage of CO2aq from the reservoir and its transport speed along the leakage pathway 668 

(arriving faster and further) as compared to the scenarios where transport occurred only 669 

by diffusion in the rock matrix. The amount of CO2aq that leaked from the reservoir 670 

was also found to increase with fluid velocity along the leakage pathway. The mass 671 

conversion of CO2aq in the geochemical reactions was found to increase with the fluid 672 

velocity and dispersion for the same set of hydraulic and geochemical parameters. The 673 

observed increase in CO2aq leakage from the reservoir and the amount that was 674 

consumed in the geochemical reactions implies that advection and dispersion in the 675 
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rock matrix are important transport processes that must be considered in addition to 676 

diffusion when modelling the leakage of CO2aq along a fractured pathway. 677 
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 685 

APPENDIX 686 

Appendix A: Writing the chemical component species from the aqueous species involved 687 

in the equilibrium and mineral kinetic reactions for the reactive transport system 688 

A total of eight aqueous species (HCO3
-, Na+, CO2aq, Ca2+, H+, OH-, CO3

2-, and NaHCO3aq) 689 

are involved in four of the equilibrium reactions (R1) to (R4) and the mineral kinetic reaction 690 

(R5), which are presented in Table 1. Following the formulation by Saaltink et al. (1998), 691 

these eight aqueous species can be converted into four chemical components and written in 692 

vector form: ( )HCO Na, CO Ca3, 2,
TT u u u u=u , with the components defined as 693 

 

2HCO - + - 2- NaHCO3 3aqHCO H OH CO3 3
Na + NaHCO3aqNa
CO CO + - 2-2 2aq H OH CO3
Ca 2Ca

u c c c c c

u c c

u c c c c

u c

= - + + +

= +

= +






- -

= +







  (A.1) 694 
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By transforming all the aqueous species in the reactions into the component species, 695 

the required number of transport equations decreases to four (number of chemical 696 

component species) from the original eight (number of aqueous species). The 697 

source/sink term in transport equation (1) takes the following form: 698 

 

HCO3

Na

CO2

Ca

2

0

u m

u

u m

u m

r r

r

r r

r r

=


==  = -
 =

kinr   (A.2) 699 

Thus, the source/sink term ( kinr ) provides information regarding the changes in the chemical 700 

component species that are driven by the combined effects of equilibrium and mineral kinetic 701 

reactions in the reactive transport equation (1). The term ( mr ) represents the kinetic reaction 702 

(dissolution or precipitation) of mineral calcite, which was defined in equation (4). From 703 

(A.2) it is immediately seen that kinr  is only a function of the kinetic reaction; this means 704 

that components are independent of the equilibrium reaction (which is actually the 705 

definition). 706 

A.2 Speciation modelling 707 

The transport of component species by equation (1) requires calculating the aqueous species 708 

concentration at every node of the computational domain. The concentration of aqueous 709 

species is obtained from the solution of the following eight algebraic equations (A.3 through 710 

A.10), which result from four of the equilibrium reactions (R1) to (R4) and the mineral kinetic 711 

reaction (R5): 712 

 ( )K 0+ + - - CO CO CO2aq 2aq 2aqH H HCO HCO3 3
c c cγ γ γ
 

- = 
 

  (A.3) 713 
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 ( ) ( )K 0+ + - - H O2H H OH OH
c cγ γ =-   (A.4) 714 

 K 0+ + 2- 2- - - -H H CO CO HCO HCO HCO3 3 33 3
c c cγ γ γ
   

- =       
  (A.5) 715 

 ( ) K 0NaHCO NaHCO + + - - +3aq 3aq Na Na HCO HCO Na3 3
c c cγ γ γ

 
- = 
 

  (A.6) 716 

 2 0HCO - + - 2- NaHCO3 3aqHCO H OH CO3 3
u c c c c c

 
- - + + + =  
 

  (A.7) 717 

 ( ) 0Na + NaHCO3aqNa
u c c- + =   (A.8) 718 

 CO CO + - 2-2 2aq H OH
0

CO3
u c c c c

 
- =  
 

+ - -   (A.9) 719 

 2+ CaCa
c u=   (A.10) 720 

721 
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