77 research outputs found
A SULT2A1 genetic variant identified by GWAS as associated with low serum DHEAS does not impact on the actual DHEA/DHEAS ratio
DHEA is the major precursor of human sex steroid synthesis and is inactivated via sulfonation to DHEAS. A previous genome-wide association study related the single nucleotide polymorphism (SNP) rs2637125, located near the coding region of DHEA sulfotransferase, SULT2A1, to serum DHEAS concentrations. However, the functional relevance of this SNP with regard to DHEA sulfonation is unknown. Using data from 3300 participants of the population-based cohort Study of Health in Pomerania, we identified 43 individuals being homozygote for the minor allele of the SNP rs2637125 (AA) and selected two sex- and age-matched individuals with AG and GG genotype (n=172) respectively. Steroid analysis including measurement of serum DHEA and DHEAS was carried out by liquid chromatography/mass spectrometry, employing steroid oxime analysis for enhancing the sensitivity of DHEA detection. We applied quantile regression models to compare median hormone levels across SULT2A1 genotypes. Median comparisons by SULT2A1 genotype (AA vs AG and GG genotypes respectively) showed no differences in the considered hormones including DHEAS, DHEA, androstenedione, as well as cortisol and cortisone concentrations. SULT2A1 genotype also had no effect on the DHEA/DHEAS ratio. Sex-stratified analyses, as well as alternative use of the SULT2A1 SNP rs182420, yielded similar negative results. Genetic variants of SULT2A1 do not appear to have an effect on individual DHEA and DHEAS concentrations or the DHEA/DHEAS ratio as a marker of DHEA sulfonation capacity
Potential Relevance of α1-Adrenergic Receptor Autoantibodies in Refractory Hypertension
-AAB might have a mechanistic role and could represent a therapeutic target. in cardiomyocytes and induce mesentery artery segment contraction.-AAB in hypertensive patients, and the notion of immunity as a possible cause of hypertension
Genome-wide association for major depression through age at onset stratification:Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium
Background Major depressive disorder (MDD) is a disabling mood disorder and, despite a known heritable component, a large meta-analysis of GWAS revealed no replicable genetic risk variants. Given prior evidence of heterogeneity by age-at-onset (AAO) in MDD, we tested whether genome-wide significant risk variants for MDD could be identified in cases subdivided by AAO. Method Discovery case-control GWASs were performed where cases were stratified using increasing/decreasing AAO-cutoffs; significant SNPs were tested in nine independent replication samples, giving a total sample of 22,158 cases and 133,749 controls for sub-setting. Polygenic score analysis was used to examine if differences in shared genetic risk exists between earlier and adult onset MDD with commonly co-morbid disorders of schizophrenia, bipolar disorder, Alzheimer’s disease, and coronary artery disease. Results We identify one replicated genome-wide significant locus associated with adult-onset (>27 years) MDD (rs7647854, OR=1.16, 95%CI=1.11-1.21, p=5.2x10-11). Using polygenic score analyses, we show that earlier-onset MDD is genetically more similar to schizophrenia and bipolar disorder than adult-onset. Conclusions We demonstrate that using additional phenotype data previously collected by genetic studies to tackle phenotypic heterogeneity in MDD can successfully lead to the discovery of genetic risk factor despite reduced sample size. Furthermore, our results suggest that the genetic susceptibility to MDD differs between adult- and earlier-onset MDD, with earlier-onset cases having a greater genetic overlap with schizophrenia and bipolar disorder
Genome-wide interaction study of a proxy for stress-sensitivity and its prediction of major depressive disorder
Individual response to stress is correlated with neuroticism and is an important predictor of both neuroticism and the onset of major depressive disorder (MDD). Identification of the genetics underpinning individual differences in response to negative events (stress-sensitivity) may improve our understanding of the molecular pathways involved, and its association with stress-related illnesses. We sought to generate a proxy for stress-sensitivity through modelling the interaction between SNP allele and MDD status on neuroticism score in order to identify genetic variants that contribute to the higher neuroticism seen in individuals with a lifetime diagnosis of depression compared to unaffected individuals. Meta-analysis of genome-wide interaction studies (GWIS) in UK Biobank (N = 23,092) and Generation Scotland: Scottish Family Health Study (N = 7,155) identified no genome-wide significance SNP interactions. However, gene-based tests identified a genome-wide significant gene, ZNF366, a negative regulator of glucocorticoid receptor function implicated in alcohol dependence (p = 1.48x10-7; Bonferroni-corrected significance threshold p < 2.79x10-6). Using summary statistics from the stress-sensitivity term of the GWIS, SNP heritability for stress-sensitivity was estimated at 5.0%. In models fitting polygenic risk scores of both MDD and neuroticism derived from independent GWAS, we show that polygenic risk scores derived from the UK Biobank stress-sensitivity GWIS significantly improved the prediction of MDD in Generation Scotland. This study may improve interpretation of larger genome-wide association studies of MDD and other stress-related illnesses, and the understanding of the etiological mechanisms underpinning stress-sensitivity
Identification of common genetic risk variants for autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD
Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation.
We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis
ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals
Common Fund of the Office of the Director of the
National Institutes of Health. Additional funds were provided by
the National Cancer Institute (NCI), National Human Genome
Research Institute (NHGRI), National Heart, Lung, and Blood Institute
(NHLBI), National Institute on Drug Abuse (NIDA), National
Institute of Mental Health (NIMH), and National Institute of Neurological
Disorders and Stroke (NINDS)
Evidence for Increased Genetic Risk Load for Major Depression in Patients Assigned to Electroconvulsive Therapy
Electroconvulsive therapy (ECT) is the treatment of choice for severe and treatment-resistant
depression; disorder severity and unfavorable treatment outcomes are shown to be influenced
by an increased genetic burden for major depression (MD). Here, we tested whether ECT assignment
and response/nonresponse are associated with an increased genetic burden for major
depression (MD) using polygenic risk score (PRS), which summarize the contribution of diseaserelated
common risk variants. Fifty-one psychiatric inpatients suffering from a major depressive
episode underwent ECT. MD-PRS were calculated for these inpatients and a separate
population-based sample (n = 3,547 healthy; n = 426 self-reported depression) based on summary
statistics from the Psychiatric Genomics Consortium MDD-working group (Cases:
n = 59,851; Controls: n = 113,154). MD-PRS explained a significant proportion of disease status
between ECT patients and healthy controls (p = .022, R2 = 1.173%); patients showed higher
MD-PRS. MD-PRS in population-based depression self-reporters were intermediate between
ECT patients and controls (n.s.). Significant associations between MD-PRS and ECT response
(50% reduction in Hamilton depression rating scale scores) were not observed. Our findings indicate
that ECT cohorts show an increased genetic burden for MD and are consistent with the
hypothesis that treatment-resistant MD patients represent a subgroup with an increased genetic
risk for MD. Larger samples are needed to better substantiate these findings
- …