2,306 research outputs found

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants

    Mitochondrial simple sequenze repeats and 12s – rRNA gene reveal two distinct lineages of Crocidura russula (Mammalia, Sorcidae)

    Get PDF
    A short segment (135 bp) of the control region and a partial sequence (394 bp) of the 12S-rRNA gene in the mitochondrial DNA of Crocidura russula were analyzed in order to test a previous hypothesis regarding the presence of a gene flow disruption in northern Africa. This breakpoint would have separated northeast-African C. russula populations from the European (plus the northwest-African) populations. The analysis was carried out on specimens from Tunisia (C. r. cf agilis), Sardinia (C. r. ichnusae), and Pantelleria (C. r. cossyrensis), and on C. r. russula from Spain and Belgium. Two C. russula lineages were identified; they both shared R2 tandem repeated motifs of the same length (12 bp), but not the same primary structure. These simple sequence repeats were present in 12–23 copies in the right domain of the control region. Within the northeast-African populations, a polymorphism of repeat variants, not yet found in Europe, was recorded. A neighbor-join tree, which was built by sequences of the conserved 12S-rRNA gene, separated the two sister groups; it permitted us to date a divergence time of 0.5Myr. Our data discriminated two different mitochondrial lineages in accordance with the previous morphological and karyological data. Ecoclimatic barriers formed during the Middle Pleistocene broke the range of ancestral species in the Eastern Algeria (Kabile Mountains), leading to two genetically separate and modern lineages. The northeast-African lineage can today be located in Tunisia, Pantelleria, and Sardinia. The northwest- African lineage (Morocco and West Algeria), reaching Spain by anthropogenic introduction, spread over north Europe in modern times. The Palaearctic C. russula species is monophyletic, but a taxonomical revision (ie, to provide a full species rank for the northeast taxa and to put in synonymy some insular taxa) is required

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Gene expression and matrix turnover in overused and damaged tendons

    Get PDF
    Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries

    Spitting Performance Parameters and Their Biomechanical Implications in the Spitting Spider, Scytodes thoracica

    Get PDF
    Spitting spiders Scytodes spp. subdue prey by entangling them at a distance with a mixture of silk, glue, and venom. Using high-speed videography and differential interference contrast microscopy, the performance parameters involved in spit ejection by Scytodes thoracica (Araneae, Scytodidae) were measured. These will ultimately need to be explained in biomechanical and fluid dynamic terms. It was found that the ejection of “spit” from the opening of the venom duct (near the proximal end of the fang) was orderly. It resulted in a pattern that scanned along a lateral-medial axis (due to fang oscillations) while traversing from ventral to dorsal (due to cheliceral elevation). Each lateral-to-medial sweep of a fang produced silk-borne beads of glue that were not present during each subsequent medial-to-lateral sweep. The ejection of “spit” was very rapid. A full scan (5–57 fang cycles, one upsweep of a chelicera) typically occupied less than 30 ms and involved fang oscillations at 278–1781 Hz. Ejection velocities were measured as high as 28.8 m/s. The “spit” was contractile. During the 0.2 s following ejection, silk shortened by 40–60% and the product of a full scan by both of the chelicerae could exert an aggregate contractile force of 0.1 – 0.3 mN. Based on these parameters, hypotheses are described concerning the biomechanical and fluid dynamic processes that could enable this kind of material ejection

    Double hadron leptoproduction in the nuclear medium

    Full text link
    First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced AA-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter

    Search for Pair Production of Scalar Top Quarks Decaying to a tau Lepton and a b Quark in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We search for pair production of supersymmetric top quarks (~t_1), followed by R-parity violating decay ~t_1 -> tau b with a branching ratio beta, using 322 pb^-1 of ppbar collisions at sqrt{s}=1.96 TeV collected by the CDF II detector at Fermilab. Two candidate events pass our final selection criteria, consistent with the standard model expectation. We set upper limits on the cross section sigma(~t_1 ~tbar_1)*beta^2 as a function of the stop mass m(~t_1). Assuming beta=1, we set a 95% confidence level limit m(~t_1)>153 GeV/c^2. The limits are also applicable to the case of a third generation scalar leptoquark (LQ_3) decaying LQ_3 -> tau b.Comment: 7 pages, 2 eps figure

    A codon substitution model that incorporates the effect of the GC contents, the gene density and the density of CpG islands of human chromosomes

    Get PDF
    Abstract Background Developing a model for codon substitutions is essential for the analyses of protein sequences. Recent studies on the mutation rates in the non-coding regions have shown that CpG mutation rates in the human genome are negatively correlated to the local GC content and to the densities of functional elements. This study aimed at understanding the effect of genomic features, namely, GC content, gene density, and frequency of CpG islands, on the rates of codon substitution in human chromosomes. Results Codon substitution rates of CpG to TpG mutations, TpG to CpG mutations, and non-CpG transitions and transversions in humans were estimated by comparing the coding regions of thousands of human and chimpanzee genes and inferring their ancestral sequences by using macaque genes as the outgroup. Since the genomic features are depending on each other, partial regression coefficients of these features were obtained. Conclusion The substitution rates of codons depend on gene densities of the chromosomes. Transcription-associated mutation is one such pressure. On the basis of these results, a model of codon substitutions that incorporates the effect of genomic features on codon substitution in human chromosomes was developed.</p

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.

    Measurement of Lifetime and Decay-Width Difference in B0s -> J/psi phi Decays

    Get PDF
    We measure the mean lifetime, tau=2/(Gamma_L+Gamma_H), and the width difference, DeltaGamma=Gamma_L-Gamma_H, of the light and heavy mass eigenstates of the B0s meson, B0sL and B0sH, in B0s -> J/psi phi decays using 1.7 fb^-1 of data collected with the CDF II detector at the Fermilab Tevatron ppbar collider. Assuming CP conservation, a good approximation for the B0s system in the Standard Model, we obtain DeltaGamma = 0.076^+0.059_-0.063 (stat.) +- 0.006 (syst.) ps^-1 and tau = 1.52 +- 0.04 (stat.) +- 0.02 (syst.) ps, the most precise measurements to date. Our constraints on the weak phase and DeltaGamma are consistent with CP conservation. Dedicated to the memory of our dear friend and colleague, Michael P. Schmid
    corecore