203 research outputs found

    Acoustic radiation force impulse imaging for differentiation of thyroid nodules

    Get PDF
    Background: Acoustic Radiation Force Impulse (ARFI)-imaging is an ultrasound-based elastography method enabling quantitative measurement of tissue stiffness. The aim of the present study was to evaluate sensitivity and specificity of ARFI-imaging for differentiation of thyroid nodules and to compare it to the well evaluated qualitative real-time elastography (RTE). Methods: ARFI-imaging involves the mechanical excitation of tissue using acoustic pulses to generate localized displacements resulting in shear-wave propagation which is tracked using correlation-based methods and recorded in m/s. Inclusion criteria were: nodules $5 mm, and cytological/histological assessment. All patients received conventional ultrasound, real-time elastography (RTE) and ARFI-imaging. Results: One-hundred-fifty-eight nodules in 138 patients were available for analysis. One-hundred-thirty-seven nodules were benign on cytology/histology, and twenty-one nodules were malignant. The median velocity of ARFI-imaging in the healthy thyroid tissue, as well as in benign and malignant thyroid nodules was 1.76 m/s, 1.90 m/s, and 2.69 m/s, respectively. While no significant difference in median velocity was found between healthy thyroid tissue and benign thyroid nodules, a significant difference was found between malignant thyroid nodules on the one hand and healthy thyroid tissue (p = 0.0019) or benign thyroid nodules (p = 0.0039) on the other hand. No significant difference of diagnostic accuracy for the diagnosis of malignant thyroid nodules was found between RTE and ARFI-imaging (0.74 vs. 0.69, p = 0.54). The combination of RTE with ARFI did not improve diagnostic accuracy. Conclusions: ARFI can be used as an additional tool in the diagnostic work up of thyroid nodules with high negative predictive value and comparable results to RTE

    Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions

    Get PDF
    At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe

    Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at √sNN = 2.76 TeV

    Get PDF
    Experimental results are presented on event-by-event net-proton fluctuation measurements in Pb–Pb collisions at √SNN=2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions.publishedVersio

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    Pion-kaon femtoscopy and the lifetime of the hadronic phase in Pb-Pb collisions at root(S)(NN)=2.76 TeV

    Get PDF
    In this paper, the first femtoscopic analysis of pion-kaon correlations at the LHC is reported. The analysis was performed on the Pb-Pb collision data at root(S)(NN) = 2.76 TeV recorded with the ALICE detector. The non-identical particle correlations probe the spatio-temporal separation between sources of different particle species as well as the average source size of the emitting system. The sizes of the pion and kaon sources increase with centrality, and pions are emitted closer to the centre of the system and/or later than kaons. This is naturally expected in a system with strong radial flow and is qualitatively reproduced by hydrodynamic models. ALICE data on pion-kaon emission asymmetry are consistent with (3+1)-dimensional viscous hydrodynamics coupled to a statistical hadronisation model, resonance propagation, and decay code THERMINATOR 2 calculation, with an additional time delay between 1 and 2 fm/c for kaons. The delay can be interpreted as evidence for a significant hadronic rescattering phase in heavy-ion collisions at the LHC. (C) 2020 The Author. Published by Elsevier B.V.Peer reviewe

    Measurement of jet radial profiles in Pb\u2013Pb collisions at 1asNN = 2.76 TeV

    Get PDF
    The jet radial structure and particle transverse momentum (pT) composition within jets are presented in centrality-selected Pb\u2013Pb collisions at 1asNN = 2.76 TeV. Track-based jets, which are also called charged jets, were reconstructed with a resolution parameter of R = 0.3 at midrapidity |\u3b7ch jet| < 0.6 for transverse momenta pT, ch jet = 30\u2013120 GeV/c. Jet\u2013hadron correlations in relative azimuth and pseudorapidity space (\u3c6,\u3b7) are measured to study the distribution of the associated particles around the jet axis for different pT,assoc-ranges between 1 and 20 GeV/c. The data in Pb\u2013Pb collisions are compared to reference distributions for pp collisions, obtained using embedded PYTHIA simulations. The number of high-pT associate particles (4 < pT,assoc < 20 GeV/c) in Pb\u2013Pb collisions is found to be suppressed compared to the reference by 30 to 10%, depending on centrality. The radial particle distribution relative to the jet axis shows a moderate modification in Pb\u2013Pb collisions with respect to PYTHIA. High-pT associate particles are slightly more collimated in Pb\u2013Pb collisions compared to the reference, while low-pT associate particles tend to be broadened. The results, which are presented for the first time down to pT, ch jet = 30 GeV/c in Pb\u2013Pb collisions, are compatible with both previous jet\u2013hadron-related measurements from the CMS Collaboration and jet shape measurements from the ALICE Collaboration at higher pT, and add further support for the established picture of in-medium parton energy loss

    Unveiling the strong interaction among hadrons at the LHC

    Get PDF
    ALICE Collaboration., Acharya, S., Adamová, D. et al. Publisher Correction: Unveiling the strong interaction among hadrons at the LHC. Nature 590, E13 (2021). https://doi.org/10.1038/s41586-020-03142-2The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at root s = 13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (dN(ch)/d eta similar to 26) as measured in p-Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p-Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM).Peer reviewe

    Search for a common baryon source in high-multiplicity pp collisions at the LHC

    Get PDF
    We report on the measurement of the size of the particle-emitting source from two-baryon correlations with ALICE in high-multiplicity pp collisions at s=13 TeV. The source radius is studied with low relative momentum p–p, p‾–p‾, p–Λ, and p‾–Λ‾ pairs as a function of the pair transverse mass mT considering for the first time in a quantitative way the effect of strong resonance decays. After correcting for this effect, the radii extracted for pairs of different particle species agree. This indicates that protons, antiprotons, Λ s, and Λ‾ s originate from the same source. Within the measured mT range (1.1–2.2) GeV/c2the invariant radius of this common source varies between 1.3 and 0.85 fm. These results provide a precise reference for studies of the strong hadron–hadron interactions and for the investigation of collective properties in small colliding systems. © 2020 CERN for the benefit of the ALICE CollaborationPeer reviewe

    Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPWe present the charged-particle pseudorapidity density in Pb-Pb collisions at root s(NN) = 5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from -3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find 21 400 +/- 1 300, while for the most peripheral (80-90%) we find 230 +/- 38. This corresponds to an increase of (27 +/- 4)% over the results at root s(NN) = 2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations-none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.772567577CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFINANCIADORA DE ESTUDOS E PROJETOS - FINEPFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoThe ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research–Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia y Tecnología (CONACYT), through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America

    Study of the \u39b\u2013\u39b interaction with femtoscopy correlations in pp and p\u2013Pb collisions at the LHC

    Get PDF
    This work presents new constraints on the existence and the binding energy of a possible \u39b\u2013\u39b bound state, the H-dibaryon, derived from \u39b\u2013\u39b femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in (Figure presented.) collisions at s=13 TeV and p\u2013Pb collisions at sNN=5.02 TeV, combined with previously published results from (Figure presented.) collisions at s=7 TeV. The \u39b\u2013\u39b scattering parameter space, spanned by the inverse scattering length f0 121 and the effective range d0, is constrained by comparing the measured \u39b\u2013\u39b correlation function with calculations obtained within the Lednick\ufd model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the \u39b\u2013\u39b interaction. The region in the (f0 121,d0) plane which would accommodate a \u39b\u2013\u39b bound state is substantially restricted compared to previous studies. The binding energy of the possible \u39b\u2013\u39b bound state is estimated within an effective-range expansion approach and is found to be B\u39b\u39b=3.2 122.4+1.6(stat) 121.0+1.8(syst) MeV
    corecore