99 research outputs found

    Improved Cloud resource allocation: how INDIGO-Datacloud is overcoming the current limitations in Cloud schedulers

    Get PDF
    Trabajo presentado a: 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP2016) 10–14 October 2016, San Francisco.Performing efficient resource provisioning is a fundamental aspect for any resource provider. Local Resource Management Systems (LRMS) have been used in data centers for decades in order to obtain the best usage of the resources, providing their fair usage and partitioning for the users. In contrast, current cloud schedulers are normally based on the immediate allocation of resources on a first-come, first-served basis, meaning that a request will fail if there are no resources (e.g. OpenStack) or it will be trivially queued ordered by entry time (e.g. OpenNebula). Moreover, these scheduling strategies are based on a static partitioning of the resources, meaning that existing quotas cannot be exceeded, even if there are idle resources allocated to other projects. This is a consequence of the fact that cloud instances are not associated with a maximum execution time and leads to a situation where the resources are under-utilized. These facts have been identified by the INDIGO-DataCloud project as being too simplistic for accommodating scientific workloads in an efficient way, leading to an underutilization of the resources, a non desirable situation in scientific data centers. In this work, we will present the work done in the scheduling area during the first year of the INDIGO project and the foreseen evolutions.The authors want to acknowledge the support of the INDIGO-DataCloud (grant number 653549) project, funded by the European Commission’s Horizon 2020 Framework Programme.Peer Reviewe

    Decreased Doublecortin (DCX) immunoreactivity in hippocampus after profound sensorineural hearing loss and vestibular dysfunction in adult mice

    Get PDF
    Objective: sensorineural hearing loss (SNHL) and bilateral vestibulopathy (BV) have been associated with cognitive decline and incident dementia. Our aim was to investigate the combined effect of profound SNHL and BV on spatial cognition and hippocampal neurogenesis in adult mice. Methods: Single oral intake of allylnitrile produces otovestibular failure in less than a week. Behavioral assessment included recording of spontaneous activity, motor activity, spatial cognition, etc. Evaluation of hippocampal neurogenesis was performed 8 weeks after treatment by quantification of neural precursor cells and proliferating cells in the dentate gyrus by staining with doublecortin (Dcx) and Ki67, respectively. Results: Profound SNHL and BV were confirmed in the allylnitrile-treated mice respectively by means of auditory brainstem response (ABR) and acoustic startle response, and several vestibular tests. Spatial cognitive deficits, i.e. higher latency to target, were observed with the Barnes maze. In the right hemisphere, no statistically significant difference was observed between groups. In the left hemisphere, the difference in mean cell densities of Dcx positive cells was statistically significant when compared to the control group, whereas the difference in mean cell density of Ki67 positive cells did not differ significantly. Conclusion: Spatial cognitive deficits and decreased immunoreactivity to DCX in the left hippocampus were observed 8 weeks after adult mice acquired profound SNHL and BV

    Peak grain forecasts for the US High Plains amid withering waters

    Get PDF
    Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas

    Impaired Nuclear Nrf2 Translocation Undermines the Oxidative Stress Response in Friedreich Ataxia

    Get PDF
    BACKGROUND: Friedreich ataxia originates from a decrease in mitochondrial frataxin, which causes the death of a subset of neurons. The biochemical hallmarks of the disease include low activity of the iron sulfur cluster-containing proteins (ISP) and impairment of antioxidant defense mechanisms that may play a major role in disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We thus investigated signaling pathways involved in antioxidant defense mechanisms. We showed that cultured fibroblasts from patients with Friedreich ataxia exhibited hypersensitivity to oxidative insults because of an impairment in the Nrf2 signaling pathway, which led to faulty induction of antioxidant enzymes. This impairment originated from previously reported actin remodeling by hydrogen peroxide. CONCLUSIONS/SIGNIFICANCE: Thus, the defective machinery for ISP synthesis by causing mitochondrial iron dysmetabolism increases hydrogen peroxide production that accounts for the increased susceptibility to oxidative stress

    The Rise and Fall of "Respectable" Spanish Liberalism, 1808-1923: An Explanatory Framework

    Get PDF
    The article focuses on the reasons behind both the consolidation of what I have termed “respectable” liberalism between the 1830s and the 1840s and its subsequent decline and fall between 1900 and 1923. In understanding both processes I study the links established between “respectable” liberals and propertied elites, the monarchy, and the Church. In the first phase these links served to consolidate the liberal polity. However, they also meant that many tenets of liberal ideology were compromised. Free elections were undermined by the operation of caciquismo, monarchs established a powerful position, and despite the Church hierarchy working with liberalism, the doctrine espoused by much of the Church was still shaped by the Counter-Reformation. Hence, “respectable” liberalism failed to achieve a popular social base. And the liberal order was increasingly denigrated as part of the corrupt “oligarchy” that ruled Spain. Worse still, between 1916 and 1923 the Church, monarch, and the propertied elite increasingly abandoned the liberal Monarchist Restoration. Hence when General Primo de Rivera launched his coup the rug was pulled from under the liberals’ feet and there was no one to cushion the fall

    Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    Get PDF
    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described

    Genome of Wild Olive and the Evolution of Oil Biosynthesis

    Get PDF
    Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at similar to 28 and similar to 59 Mya. These events contributed to the expansion and neo-functionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2,3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics

    FinnGen provides genetic insights from a well-phenotyped isolated population

    Get PDF
    Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10–11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.publishedVersionPeer reviewe
    corecore