18 research outputs found

    The LOFT mission concept: a status update

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    Cell type-specific three-dimensional structure of thalamocortical networks in a barrel column of rat vibrissal cortex

    No full text
    Soma location, dendrite morphology, and synaptic innervation may represent key determinants of functional responses of individual neurons, such as sensory−evoked spiking. Here, we reconstruct the 3D circuits formed by thalamocortical afferents from the lemniscal pathway and excitatory neurons of an anatomically defined cortical column in rat vibrissal cortex. We objectively classify 9 cortical cell types and estimate the number and distribution of their somata, dendrites, and thalamocortical synapses. Somata and dendrites of most cell types intermingle, while thalamocortical connectivity depends strongly upon the cell type and the 3D soma location of the postsynaptic neuron. Correlating dendrite morphology and thalamocortical connectivity to functional responses revealed that the lemniscal afferents can account for some of the cell type− and location−specific subthreshold and spiking responses after passive whisker touch (e.g., in layer 4, but not for other cell types, e.g., in layer 5). Our data provides a quantitative 3D prediction of the cell type−specific lemniscal synaptic wiring diagram and elucidates structure−function relationships of this physiologically relevant pathway at single−cell resolutio

    Alternating Treatment With Pazopanib and Everolimus vs Continuous Pazopanib to Delay Disease Progression in Patients With Metastatic Clear Cell Renal Cell Cancer The ROPETAR Randomized Clinical Trial

    No full text
    IMPORTANCE To our knowledge, this is the first randomized clinical trial evaluating an alternating treatment regimen in an attempt to delay disease progression in clear cell renal cell carcinoma. OBJECTIVE To test our hypothesis that an 8-week rotating treatment schedule with pazopanib and everolimus delays disease progression, exhibits more favorable toxic effects, and improves quality of life when compared with continuous treatment with pazopanib. DESIGN, SETTING, AND PARTICIPANTS This was an open-label, randomized (1: 1) study (ROPETAR trial). In total, 101 patients with treatment-naive progressivemetastatic clear cell renal cell carcinoma were enrolled between September 2012 and April 2014 from 17 large peripheral or academic hospitals in The Netherlands and followed for at least one year. INTERVENTIONS First-line treatment consisted of either an 8-week alternating treatment schedule of pazopanib 800 mg/d and everolimus 10 mg/d (rotating arm) or continuous pazopanib 800 mg/d (control arm) until progression. After progression, patients made a final rotation to either pazopanib or everolimus monotherapy (rotating arm) or initiated everolimus (control arm). MAIN OUTCOME AND MEASURES The primary end pointwas survival until first progression or death. Secondary end points included time to second progression or death, toxic effects, and quality of life. RESULTS A total of 52 patients were randomized to the rotating arm (median [range] age, 65 [44-87] years) and 49 patients to the control arm (median [range] age, 67 [38-82] years). Memorial Sloan Kettering Cancer Center risk category was favorable in 26% of patients, intermediate in 58%, and poor in 15%. Baseline characteristics and risk categories were well balanced between arms. One-year PFS1 for rotating treatment was 45%(95% CI, 33-60) and 32%(95% CI, 21-49) for pazopanib (control). Median time until first progression or death for rotating treatment was 7.4 months (95% CI, 5.6-18.4) and 9.4 months (95% CI, 6.6-11.9) for pazopanib (control) (P = .37). Mucositis, anorexia, and dizziness were more prevalent in the rotating arm during first-line treatment. No difference in quality of life was observed. CONCLUSIONS AND RELEVANCE Rotating treatment did not result in prolonged progression-free-survival, fewer toxic effects, or improved quality of life. First-line treatment with a vascular endothelial growth factor inhibitor remains the optimal approach in metastatic clear cell renal cell carcinom

    Addition of zoledronic acid to neoadjuvant chemotherapy is not beneficial in patients with HER2-negative stage II/III breast cancer: 5-year survival analysis of the NEOZOTAC trial (BOOG 2010-01)

    No full text
    Background: Adjuvant bisphosphonates are associated with improved breast cancer survival in postmenopausal patients. Addition of zoledronic acid (ZA) to neoadjuvant chemotherapy did not improve pathological complete response in the phase III NEOZOTAC trial. Here we report the results of the secondary endpoints, disease-free survival, (DFS) and overall survival (OS). Patients and methods: Patients with HER2-negative, stage II/III breast cancer were randomized to receive the standard 6 cycles of neoadjuvant TAC (docetaxel/doxorubicin/cyclophosphamide) chemotherapy with or without 4 mg intravenous (IV) ZA administered within 24 h of chemotherapy. This was repeated every 21 days for 6 cycles. Cox regression models were used to evaluate the effect of ZA and covariates on DFS and OS. Regression models were used to examine the association between insulin, glucose, insulin growth factor-1 (IGF-1) levels, and IGF-1 receptor (IGF-1R) expression with survival outcomes. Results: Two hundred forty-six women were eligible for inclusion. After a median follow-up of 6.4 years, OS for all patients was significantly worse for those who received ZA (HR 0.468, 95% CI 0.226-0.967, P = 0.040). DFS was not significantly different between the treatment arms (HR 0.656, 95% CI 0.371-1.160, P = 0.147). In a subgroup analysis of postmenopausal women, no significant difference in DFS or OS was found for those who received ZA compared with the control group (HR 0.464, 95% CI 0.176-1.222, P = 0.120; HR 0.539, 95% CI 0.228-1.273, P = 0.159, respectively). The subgroup analysis of premenopausal patients was not significantly different for DFS and OS ((HR 0.798, 95% CI 0.369-1.725, P = 0.565; HR 0.456, 95% CI 0.156-1.336, P = 0.152, respectively). Baseline IGF-1R expression was not significantly associated with DFS or OS. In a predefined additional study, lower serum levels of insulin were associated with improved DFS (HR 1.025, 95% CI 1.005-1.045, P = 0.014). Conclusions: Our results suggest that ZA in combination with neoadjuvant chemotherapy was associated with a worse OS in breast cancer (both pre- and postmenopausal patients). However, in a subgroup analysis of postmenopausal patients, ZA treatment was not associated with DFS or OS. Also, DFS was not significantly different between both groups. IGF-1R expression in tumor tissue before and after neoadjuvant treatment did not predict survival
    corecore