1,682 research outputs found

    Drug Susceptibility in Leishmania Isolates Following Miltefosine Treatment in Cases of Visceral Leishmaniasis and Post Kala-Azar Dermal Leishmaniasis

    Get PDF
    Resistance to antimonials has emerged as a major hurdle to the treatment and control of VL and led to the introduction of Miltefosine as first line treatment in the Indian subcontinent. MIL is an oral drug with a long half-life, and it is feared that resistance may emerge rapidly, threatening control efforts under the VL elimination program. There is an urgent need for monitoring treatment efficacy and emergence of drug resistance in the field. In a set of VL/PKDL cases recruited for MIL treatment, we observed comparable drug susceptibility in pre- and post-treatment isolates from cured VL patients while MIL susceptibility was significantly reduced in isolates from VL relapse and PKDL cases. The PKDL isolates showed higher tolerance to MIL as compared to VL isolates. Both VL and PKDL isolates were uniformly susceptible to PMM. MIL transporter genes LdMT/LdRos3 were previously reported as potential resistance markers in strains in which MIL resistance was experimentally induced. The point mutations and the down-regulated expression of these transporters observed in vitro could, however, not be verified in natural populations of parasites. LdMT/LdRos3 genes therefore, do not appear to be suitable markers so far for monitoring drug susceptibility in clinical leishmanial isolates

    Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods

    Full text link
    [EN] Transient absorption spectroscopy in combination with in silico methods has been employed to study the interactions between human serum albumin (HSA) and the anti-psychotic agent chlorpromazine (CPZ) as well as its two demethylated metabolites (MCPZ and DCPZ). Thus, solutions containing CPZ, MCPZ or DCPZ and HSA (molar ligand:protein ratios between 1:0 and 1:3) were submitted to laser flash photolysis and the Delta A(max) value at lambda = 470 nm, corresponding to the triplet excited state, was monitored. In all cases, the protein-bound ligand exhibited higher Delta Amax values measured after the laser pulse and were also considerably longer-lived than the non-complexed forms. This is in agreement with an enhanced hydrophilicity of the metabolites, due to the replacement of methyl groups with H that led to a lower extent of protein binding. For the three compounds, laser flash photolysis displacement experiments using warfarin or ibuprofen indicated Sudlow site I as the main binding site. Docking and molecular dynamics simulation studies revealed that the binding mode of the two demethylated ligands with HSA would be remarkable different from CPZ, specially for DCPZ, which appears to come from the different ability of their terminal ammonium groups to stablish hydrogen bonding interactions with the negatively charged residues within the protein pocket (Glu153, Glu292) as well as to allocate the methyl groups in an apolar environment. DCPZ would be rotated 180 degrees in relation to CPZ locating the aromatic ring away from the Sudlow site I of HSA. (C) 2019 Elsevier B.V. All rights reserved.Financial support from Ministerio de Economia, Industria y Competitividad (CTQ2016-78875-P, SAF2016-75638-R, BES-2011-043706), Generalitat Valenciana (Prometeo 2017/075), Xunta de Galicia [Centro Singular de Investigacion de Galicia accreditation 2016-2019 (ED431G/09, ED431B 2018/04) and post-doctoral fellowship to E. L.] and European Union (European Regional Development Fund-ERDF) is gratefully acknowledged. I. A. holds a "Miguel Servet" contract (CP1116/00052) funded by the Carlos III Health Institute. We are grateful to the Centro de Supercomputacion de Galicia (CESGA) for computational facilities.Limones Herrero, D.; Palumbo, F.; Vendrell Criado, V.; Andreu Ros, MI.; Lence, E.; González-Bello, C.; Miranda Alonso, MÁ.... (2020). Investigation of metabolite-protein interactions by transient absorption spectroscopy and in silico methods. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy. 226:1-8. https://doi.org/10.1016/j.saa.2019.117652S18226Yang, G. X., Li, X., & Snyder, M. (2012). Investigating metabolite–protein interactions: An overview of available techniques. Methods, 57(4), 459-466. doi:10.1016/j.ymeth.2012.06.013S. Hage, D., Anguizola, J., Barnaby, O., Jackson, A., J. Yoo, M., Papastavros, E., … Tong, Z. (2011). Characterization of Drug Interactions with Serum Proteins by Using High-Performance Affinity Chromatography. Current Drug Metabolism, 12(4), 313-328. doi:10.2174/138920011795202938Matsuda, R., Bi, C., Anguizola, J., Sobansky, M., Rodriguez, E., Vargas Badilla, J., … Hage, D. S. (2014). Studies of metabolite–protein interactions: A review. Journal of Chromatography B, 966, 48-58. doi:10.1016/j.jchromb.2013.11.043López-Muñoz, F., Alamo, C., cuenca, E., Shen, W., Clervoy, P., & Rubio, G. (2005). History of the Discovery and Clinical Introduction of Chlorpromazine. Annals of Clinical Psychiatry, 17(3), 113-135. doi:10.1080/10401230591002002Beckett, A. H., Beaven, M. A., & Robinson, A. E. (1963). Metabolism of chlorpromazine in humans. Biochemical Pharmacology, 12(8), 779-794. doi:10.1016/0006-2952(63)90108-4Chetty, M., Moodley, S. V., & Miller, R. (1994). Important Metabolites to Measure in Pharmacodynamic Studies of Chlorpromazine. Therapeutic Drug Monitoring, 16(1), 30-36. doi:10.1097/00007691-199402000-00004Hubbard, J. W., Midha, K. K., Hawes, E. M., McKAY, G., Marder, S. R., Aravagiri, M., & Korchinski, E. D. (1993). Metabolism of Phenothiazine and Butyrophenone Antipsychotic Drugs. British Journal of Psychiatry, 163(S22), 19-24. doi:10.1192/s0007125000292556García, C., Oyola, R., Piñero, L. E., Arce, R., Silva, J., & Sánchez, V. (2005). Substitution and Solvent Effects on the Photophysical Properties of Several Series of 10-Alkylated Phenothiazine Derivatives. The Journal of Physical Chemistry A, 109(15), 3360-3371. doi:10.1021/jp044530jNavaratnam, S., Parsons, B. J., Phillips, G. O., & Davies, A. K. (1978). Laser flash photolysis study of the photoionisation of chlorpromazine and promazine in solution. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 74(0), 1811. doi:10.1039/f19787401811Palumbo, F., Garcia-Lainez, G., Limones-Herrero, D., Coloma, M. D., Escobar, J., Jiménez, M. C., … Andreu, I. (2016). Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites. Toxicology and Applied Pharmacology, 313, 131-137. doi:10.1016/j.taap.2016.10.024Garcia, C., Smith, G. A., McGimpsey, W. G., Kochevar, I. E., & Redmond, R. W. (1995). Mechanism and Solvent Dependence for Photoionization of Promazine and Chlorpromazine. Journal of the American Chemical Society, 117(44), 10871-10878. doi:10.1021/ja00149a010Nath, S., & Sapre, A. V. (2001). Photoinduced electron transfer from chloropromazine and promethazine to chloroalkanes accompanied by cleavage of C–Cl bond. Chemical Physics Letters, 344(1-2), 138-146. doi:10.1016/s0009-2614(01)00685-6Joshi, R., Ghanty, T. K., & Mukherjee, T. (2008). Reactions and structural investigation of chlorpromazine radical cation. Journal of Molecular Structure, 888(1-3), 401-408. doi:10.1016/j.molstruc.2008.01.025He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209-215. doi:10.1038/358209a0Sharples, D. (1974). The binding of chlorpromazine to human serum albumin. Journal of Pharmacy and Pharmacology, 26(8), 640-641. doi:10.1111/j.2042-7158.1974.tb10679.xVerbeeck, R. K., Cardinal, J.-A., Hill, A. G., & Midha, K. K. (1983). Binding of phenothiazine neuroleptics to plasma proteins. Biochemical Pharmacology, 32(17), 2565-2570. doi:10.1016/0006-2952(83)90019-9Silva, D., Cortez, C. M., & Louro, S. R. W. (2004). Quenching of the intrinsic fluorescence of bovine serum albumin by chlorpromazine and hemin. Brazilian Journal of Medical and Biological Research, 37(7), 963-968. doi:10.1590/s0100-879x2004000700004Lázaro, E., Lowe, P. J., Briand, X., & Faller, B. (2008). New Approach To Measure Protein Binding Based on a Parallel Artificial Membrane Assay and Human Serum Albumin. Journal of Medicinal Chemistry, 51(7), 2009-2017. doi:10.1021/jm7012826Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: A Global Biochemical Approach to Drug Response and Disease. Annual Review of Pharmacology and Toxicology, 48(1), 653-683. doi:10.1146/annurev.pharmtox.48.113006.094715Korkuć, P., & Walther, D. (2015). Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity. Frontiers in Molecular Biosciences, 2. doi:10.3389/fmolb.2015.00051Ohnmacht, C. M., Chen, S., Tong, Z., & Hage, D. S. (2006). Studies by biointeraction chromatography of binding by phenytoin metabolites to human serum albumin. Journal of Chromatography B, 836(1-2), 83-91. doi:10.1016/j.jchromb.2006.03.043Roelofs, K. G., Wang, J., Sintim, H. O., & Lee, V. T. (2011). Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proceedings of the National Academy of Sciences, 108(37), 15528-15533. doi:10.1073/pnas.1018949108Jimenez, M., & Miranda, M. (2015). Triplet Excited States as a Source of Relevant (Bio)Chemical Information. Current Topics in Medicinal Chemistry, 14(23), 2734-2742. doi:10.2174/1568026614666141216100907Jiménez, M. C., Miranda, M. A., & Vayá, I. (2005). Triplet Excited States as Chiral Reporters for the Binding of Drugs to Transport Proteins. Journal of the American Chemical Society, 127(29), 10134-10135. doi:10.1021/ja0514489Vayá, I., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2006). Use of Triplet Excited States for the Study of Drug Binding to Human and Bovine Serum Albumins. ChemMedChem, 1(9), 1015-1020. doi:10.1002/cmdc.200600061Vayá, I., Jiménez, M. C., & Miranda, M. A. (2008). Transient Absorption Spectroscopy for Determining Multiple Site Occupancy in Drug−Protein Conjugates. A Comparison between Human and Bovine Serum Albumins Using Flurbiprofen Methyl Ester as a Probe. The Journal of Physical Chemistry B, 112(9), 2694-2699. doi:10.1021/jp076960qPérez-Ruiz, R., Bueno, C. J., Jiménez, M. C., & Miranda, M. A. (2010). In situ Transient Absorption Spectroscopy to Assess Competition between Serum Albumin and Alpha-1-Acid Glycoprotein for Drug Transport. The Journal of Physical Chemistry Letters, 1(5), 829-833. doi:10.1021/jz1000227Nuin, E., Jiménez, M. C., Sastre, G., Andreu, I., & Miranda, M. A. (2013). Drug–Drug Interactions within Protein Cavities Probed by Triplet–Triplet Energy Transfer. The Journal of Physical Chemistry Letters, 4(10), 1603-1607. doi:10.1021/jz400640sAlonso, R., Yamaji, M., Jiménez, M. C., & Miranda, M. A. (2010). Enhanced Photostability of the Anthracene Chromophore in Aqueous Medium upon Protein Encapsulation. The Journal of Physical Chemistry B, 114(34), 11363-11369. doi:10.1021/jp104900rAlonso, R., Jiménez, M. C., & Miranda, M. A. (2011). Stereodifferentiation in the Compartmentalized Photooxidation of a Protein-Bound Anthracene. Organic Letters, 13(15), 3860-3863. doi:10.1021/ol201209hKitamura, K., Fujitani, K., Takahashi, K., Tanaka, Y., Hirako, S., Kotani, C., … Takegami, S. (2000). Synthesis of [N-13CH3] drugs (chlorpromazine, triflupromazine and promazine). Journal of Labelled Compounds and Radiopharmaceuticals, 43(9), 865-872. doi:10.1002/1099-1344(200008)43:93.0.co;2-eGhuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural Basis of the Drug-binding Specificity of Human Serum Albumin. Journal of Molecular Biology, 353(1), 38-52. doi:10.1016/j.jmb.2005.07.075Pérez-Ruiz, R., Molins-Molina, O., Lence, E., González-Bello, C., Miranda, M. A., & Jiménez, M. C. (2018). Photogeneration of Quinone Methides as Latent Electrophiles for Lysine Targeting. The Journal of Organic Chemistry, 83(21), 13019-13029. doi:10.1021/acs.joc.8b01559Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation, 9(7), 3084-3095. doi:10.1021/ct400341

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    SARS-CoV-2 receptor binding domain displayed on HBsAg virus–like particles elicits protective immunity in macaques

    Get PDF
    Authorized vaccines against SARS-CoV-2 remain less available in low- and middle-income countries due to insufficient supply, high costs, and storage requirements. Global immunity could still benefit from new vaccines using widely available, safe adjuvants, such as alum and protein subunits, suited to low-cost production in existing manufacturing facilities. Here, a clinical-stage vaccine candidate comprising a SARS-CoV-2 receptor binding domain–hepatitis B surface antigen virus–like particle elicited protective immunity in cynomolgus macaques. Titers of neutralizing antibodies (>104) induced by this candidate were above the range of protection for other licensed vaccines in nonhuman primates. Including CpG 1018 did not significantly improve the immunological responses. Vaccinated animals challenged with SARS-CoV-2 showed reduced median viral loads in bronchoalveolar lavage (~3.4 log10) and nasal mucosa (~2.9 log10) versus sham controls. These data support the potential benefit of this design for a low-cost modular vaccine platform for SARS-CoV-2 and other variants of concern or betacoronaviruses

    Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    Get PDF
    Background: Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. Methods: We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results: WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P <0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E(-7)), and immune-related complications (e. g. Natural killer cell mediated cytotoxity, P = 3.8E(-5); B cell receptor signaling pathway, P = 7.2E(-5)). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection of differentially connected genes identified various genes previously identified to be associated with obesity in humans and rodents, e.g. CSF1R and MARC2. Conclusions: To our knowledge, this is the first study to apply systems biology approaches using porcine adipose tissue RNA-Sequencing data in a genetically characterized porcine model for obesity. We revealed complex networks, pathways, candidate and regulatory genes related to obesity, confirming the complexity of obesity and its association with immune-related disorders and osteoporosis

    Knock-in models related to Alzheimer’s disease: synaptic transmission, plaques and the role of microglia

    Get PDF
    Funder: Cure Alzheimer's Fund; doi: http://dx.doi.org/10.13039/100007625Funder: UK Dementia Research Institute (GB)Funder: Censejo Nacional de Ciencia Tecnilogia (MX)Funder: Alzheimerfonden; doi: http://dx.doi.org/10.13039/501100008599Funder: Dolby Family FundAbstract: Background: Microglia are active modulators of Alzheimer’s disease but their role in relation to amyloid plaques and synaptic changes due to rising amyloid beta is unclear. We add novel findings concerning these relationships and investigate which of our previously reported results from transgenic mice can be validated in knock-in mice, in which overexpression and other artefacts of transgenic technology are avoided. Methods: AppNL-F and AppNL-G-F knock-in mice expressing humanised amyloid beta with mutations in App that cause familial Alzheimer’s disease were compared to wild type mice throughout life. In vitro approaches were used to understand microglial alterations at the genetic and protein levels and synaptic function and plasticity in CA1 hippocampal neurones, each in relationship to both age and stage of amyloid beta pathology. The contribution of microglia to neuronal function was further investigated by ablating microglia with CSF1R inhibitor PLX5622. Results: Both App knock-in lines showed increased glutamate release probability prior to detection of plaques. Consistent with results in transgenic mice, this persisted throughout life in AppNL-F mice but was not evident in AppNL-G-F with sparse plaques. Unlike transgenic mice, loss of spontaneous excitatory activity only occurred at the latest stages, while no change could be detected in spontaneous inhibitory synaptic transmission or magnitude of long-term potentiation. Also, in contrast to transgenic mice, the microglial response in both App knock-in lines was delayed until a moderate plaque load developed. Surviving PLX5266-depleted microglia tended to be CD68-positive. Partial microglial ablation led to aged but not young wild type animals mimicking the increased glutamate release probability in App knock-ins and exacerbated the App knock-in phenotype. Complete ablation was less effective in altering synaptic function, while neither treatment altered plaque load. Conclusions: Increased glutamate release probability is similar across knock-in and transgenic mouse models of Alzheimer’s disease, likely reflecting acute physiological effects of soluble amyloid beta. Microglia respond later to increased amyloid beta levels by proliferating and upregulating Cd68 and Trem2. Partial depletion of microglia suggests that, in wild type mice, alteration of surviving phagocytic microglia, rather than microglial loss, drives age-dependent effects on glutamate release that become exacerbated in Alzheimer’s disease

    Evidence for large-scale gene-by-smoking interaction effects on pulmonary function

    Get PDF
    Background: Smoking is the strongest environmental risk factor for reduced pulmonary function. The genetic component of various pulmonary traits has also been demonstrated, and at least 26 loci have been reproducibly associated with either FEV1 (forced expiratory volume in 1 second) or FEV1/FVC (FEV1/forced vital capacity). Although the main effects of smoking and genetic loci are well established, the question of potential gene-by-smoking interaction effect remains unanswered. The aim of the present study was to assess, using a genetic risk score approach, whether the effect of these 26 loci on pulmonary function is influenced by smoking. Methods: We evaluated the interaction between smoking exposure, considered as either ever vs never or pack-years, and a 26-single nucleotide polymorphisms (SNPs) genetic risk score in relation to FEV1 or FEV1/FVC in 50 047 participants of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) and SpiroMeta consortia. Results: We identified an interaction (beta(int) = -0.036, 95% confidence interval, -0.040 to -0.032, P = 0.00057) between an unweighted 26 SNP genetic risk score and smoking status (ever/never) on the FEV1/FVC ratio. In interpreting this interaction, we showed that the genetic risk of falling below the FEV1/FVC threshold used to diagnose chronic obstructive pulmonary disease is higher among ever smokers than among never smokers. A replication analysis in two independent datasets, although not statistically significant, showed a similar trend in the interaction effect. Conclusions: This study highlights the benefit of using genetic risk scores for identifying interactions missed when studying individual SNPs and shows, for the first time, that persons with the highest genetic risk for low FEV1/FVC may be more susceptible to the deleterious effects of smoking.Peer reviewe

    Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis

    Get PDF
    Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease
    corecore