1,172 research outputs found

    Calciphylaxis following kidney transplantation: a case report

    Get PDF
    Introduction: Calciphylaxis occurring after kidney transplantation is rare and rarely reported. It results in chronic non-healing wounds and is associated with a poor prognosis and is often fatal. We present a case of proximal lower limb calciphylaxis that occurred early after kidney transplantation. The patient had no classic associated risk factors. He had previously had a total parathyroidectomy but had normal serum calcium-phosphate product and parathyroid hormone levels. The clinical outcome of this case was favorable and highlights some fundamental issues relating to management. Case prsentation: A 70-year-old British Caucasian man with end-stage renal failure secondary to IgA nephropathy presented six months post kidney transplantation with cutaneous calciphylaxis lesions involving the medial aspect of the thigh bilaterally. Conclusion: To the best of our knowledge, this is the first reported case of rapid onset cutaneous calciphylaxis occurring soon after kidney transplantation that was associated with a favorable outcome. Cutaneous calciphylaxis lesions should be promptly managed with meticulous wound care, antimicrobial therapy and the correction of calcium-phosphate product where indicated

    Generic mechanism for generating a liquid-liquid phase transition

    Full text link
    Recent experimental results indicate that phosphorus, a single-component system, can have two liquid phases: a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities is consistent with experimental data for a variety of materials, including single-component systems such as water, silica and carbon. Molecular dynamics simulations of very specific models for supercooled water, liquid carbon and supercooled silica, predict a LDL-HDL critical point, but a coherent and general interpretation of the LDL-HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular liquid metals), and such potentials are often used to decribe systems that exhibit a density anomaly. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of the density anomaly.Comment: 5 pages, 3 ps Fig

    RyRCa2+ Leak Limits Cardiac Ca2+ Window Current Overcoming the Tonic Effect of Calmodulin in Mice

    Get PDF
    Ca2+ mediates the functional coupling between L-type Ca2+ channel (LTCC) and sarcoplasmic reticulum (SR) Ca2+ release channel (ryanodine receptor, RyR), participating in key pathophysiological processes. This crosstalk manifests as the orthograde Ca2+-induced Ca2+-release (CICR) mechanism triggered by Ca2+ influx, but also as the retrograde Ca2+-dependent inactivation (CDI) of LTCC, which depends on both Ca2+ permeating through the LTCC itself and on SR Ca2+ release through the RyR. This latter effect has been suggested to rely on local rather than global Ca2+ signaling, which might parallel the nanodomain control of CDI carried out through calmodulin (CaM). Analyzing the CICR in catecholaminergic polymorphic ventricular tachycardia (CPVT) mice as a model of RyR-generated Ca2+ leak, we evidence here that increased occurrence of the discrete local SR Ca2+ releases through the RyRs (Ca2+ sparks) causea depolarizing shift in activation and a hyperpolarizing shift inisochronic inactivation of cardiac LTCC current resulting in the reduction of window current. Both increasing fast [Ca2+]i buffer capacity or depleting SR Ca2+ store blunted these changes, which could be reproduced in WT cells by RyRCa2+ leak induced with Ryanodol and CaM inhibition.Our results unveiled a new paradigm for CaM-dependent effect on LTCC gating and further the nanodomain Ca2+ control of LTCC, emphasizing the importance of spatio-temporal relationships between Ca2+ signals and CaM function

    Investigation into mercury bound to biothiols: structural identification using ESI–ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS

    Get PDF
    Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)2, Hg(GS)2, MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury–amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Identification and validation of a QTL influencing bitter pit symptoms in apple (Malus x domestica)

    Get PDF
    Bitter pit is one of the most economically important physiological disorders affecting apple fruit production, causing soft discrete pitting of the cortical flesh of the apple fruits which renders them unmarketable. The disorder is heritable; however, the environment and cultural practices play a major role in expression of symptoms. Bitter pit has been shown to be controllable to a certain extent using calcium sprays and dips; however, their use does not entirely prevent the incidence of the disorder. Previously, bitter pit has been shown to be controlled by two dominant genes, and markers on linkage group 16 of the apple genome were identified that were significantly associated with the expression of bitter pit symptoms in a genome-wide association study. In this investigation, we identified a major QTL for bitter pit defined by two microsatellite (SSR) markers. The association of the SSRs with the bitter pit locus, and their ability to predict severe symptom expression, was confirmed through screening of individuals with stable phenotypic expression from an additional mapping progeny. The data generated in this current study suggest a two gene model could account for the control of bitter pit symptom expression; however, only one of the loci was detectable, most likely due to dominance of alleles carried by both parents of the mapping progeny used. The SSR markers identified are cost-effective, robust and multi-allelic and thus should prove useful for the identification of seedlings with resistance to bitter pit using marker-assisted selection in apple breeding programs

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+→K+μ+μ−B^+ \to K^+\mu^+\mu^-, B0→K∗(892)0μ+μ−B^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0→ϕ(1020)μ+μ−B^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb−14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+→K+μ+μ−B^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0→K∗0μ+μ−B^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K∗0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0→ϕμ+μ−decayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore