54 research outputs found

    Breeding for genetic resistance to Salmonella in pigs

    Get PDF
    Previous experimental Salmonella infection studies in Denmark have shown that some pigs remain faecal culture negative and seronegative despite oral inoculation with 10 c.f.u. S. Typhimunum and housing in highly contaminated pens, suggesting that some pigs are genetically resistant to Salmonella. Our study tested the following hypothesis: The Salmonella-negative status in certain pigs is due to genetic resistance, related to a single gene The resistance gene was supposed to have a low frequency and to be recessive and that full resistance only would appear if both alleles were recessive

    Fluid administration rate for uncontrolled intraabdominal hemorrhage in swine

    Get PDF
    Background We hypothesized that slow crystalloid resuscitation would result in less blood loss and a smaller hemoglobin decrease compared to a rapid resuscitation during uncontrolled hemorrhage. Methods Anesthetized, splenectomized domestic swine underwent hepatic lobar hemitransection. Lactated Ringers was given at 150 or 20 mL/min IV (rapid vs. slow, respectively, N = 12 per group; limit of 100 mL/kg). Primary endpoints were blood loss and serum hemoglobin; secondary endpoints included survival, vital signs, coagulation parameters, and blood gases. Results The slow group had a less blood loss (1.6 vs. 2.7 L, respectively) and a higher final hemoglobin concentration (6.0 vs. 3.4 g/dL). Conclusions Using a fixed volume of crystalloid resuscitation in this porcine model of uncontrolled intraabdominal hemorrhage, a slow IV infusion rate produced less blood loss and a smaller hemoglobin decrease compared to rapid infusion

    The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field

    Get PDF
    We present new constraints on the relationship between galaxies and their host dark matter halos, measured from the location of the peak of the stellar-to-halo mass ratio (SHMR), up to the most massive galaxy clusters at redshift z0.8z\sim0.8 and over a volume of nearly 0.1~Gpc3^3. We use a unique combination of deep observations in the CFHTLenS/VIPERS field from the near-UV to the near-IR, supplemented by 60000\sim60\,000 secure spectroscopic redshifts, analysing galaxy clustering, galaxy-galaxy lensing and the stellar mass function. We interpret our measurements within the halo occupation distribution (HOD) framework, separating the contributions from central and satellite galaxies. We find that the SHMR for the central galaxies peaks at Mh,peak=1.90.1+0.2×1012MM_{\rm h, peak} = 1.9^{+0.2}_{-0.1}\times10^{12} M_{\odot} with an amplitude of 0.0250.025, which decreases to 0.001\sim0.001 for massive halos (Mh>1014MM_{\rm h} > 10^{14} M_{\odot}). Compared to central galaxies only, the total SHMR (including satellites) is boosted by a factor 10 in the high-mass regime (cluster-size halos), a result consistent with cluster analyses from the literature based on fully independent methods. After properly accounting for differences in modelling, we have compared our results with a large number of results from the literature up to z=1z=1: we find good general agreement, independently of the method used, within the typical stellar-mass systematic errors at low to intermediate mass (M<1011M{M}_{\star} < 10^{11} M_{\odot}) and the statistical errors above. We have also compared our SHMR results to semi-analytic simulations and found that the SHMR is tilted compared to our measurements in such a way that they over- (under-) predict star formation efficiency in central (satellite) galaxies.Comment: 31 pages, 18 figures, 4 table. Accepted for publication in MNRAS. Online material available at http://www.cfhtlens.or

    The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field

    Get PDF
    We present new constraints on the relationship between galaxies and their host dark matter haloes, measured from the location of the peak of the stellar-to-halo mass ratio (SHMR), up to the most massive galaxy clusters at redshift z∼0.8 and over a volume of nearly 0.1Gpc3. We use a unique combination of deep observations in the CFHTLenS/VIPERS field from the near-UV to the near-IR, supplemented by ∼60 000 secure spectroscopic redshifts, analysing galaxy clustering, galaxy-galaxy lensing and the stellar mass function. We interpret our measurements within the halo occupation distribution (HOD) framework, separating the contributions from central and satellite galaxies. We find that the SHMR for the central galaxies peaks at Mh,peak=1.90.1+0.2×1012MM_{\rm h, peak} = 1.9^{+0.2}_{-0.1}\times 10^{12}{\,{\rm M}_{{\odot }}} with an amplitude of 0.025, which decreases to ∼0.001 for massive haloes (Mh>1014M{{{M}_{\rm h}}}> 10^{14} {\,{\rm M}_{{\odot }}}). Compared to central galaxies only, the total SHMR (including satellites) is boosted by a factor of 10 in the high-mass regime (cluster-size haloes), a result consistent with cluster analyses from the literature based on fully independent methods. After properly accounting for differences in modelling, we have compared our results with a large number of results from the literature up to z=1: we find good general agreement, independently of the method used, within the typical stellar-mass systematic errors at low to intermediate mass (M<1011M{{{M}_{\rm \star }}}<10^{11} {\,{\rm M}_{{\odot }}}) and the statistical errors above. We have also compared our SHMR results to semi-analytic simulations and found that the SHMR is tilted compared to our measurements in such a way that they over- (under-) predict star formation efficiency in central (satellite) galaxie

    The XXL Survey IV. Mass-temperature relation of the bright cluster sample

    Get PDF
    The XXL survey is the largest survey carried out by XMM-Newton. Covering an area of 50deg2^2, the survey contains 450\sim450 galaxy clusters out to a redshift \sim2 and to an X-ray flux limit of 5×1015ergs1cm2\sim5\times10^{-15}erg\,s^{-1}cm^{-2}. This paper is part of the first release of XXL results focussed on the bright cluster sample. We investigate the scaling relation between weak-lensing mass and X-ray temperature for the brightest clusters in XXL. The scaling relation is used to estimate the mass of all 100 clusters in XXL-100-GC. Based on a subsample of 38 objects that lie within the intersection of the northern XXL field and the publicly available CFHTLenS catalog, we derive the MWLM_{WL} of each system with careful considerations of the systematics. The clusters lie at 0.1<z<0.60.1<z<0.6 and span a range of T15keV T\simeq1-5keV. We combine our sample with 58 clusters from the literature, increasing the range out to 10keV. To date, this is the largest sample of clusters with MWLM_{WL} measurements that has been used to study the mass-temperature relation. The fit (MTbM\propto T^b) to the XXL clusters returns a slope b=1.780.32+0.37b=1.78^{+0.37}_{-0.32} and intrinsic scatter σlnMT0.53\sigma_{\ln M|T}\simeq0.53; the scatter is dominated by disturbed clusters. The fit to the combined sample of 96 clusters is in tension with self-similarity, b=1.67±0.12b=1.67\pm0.12 and σlnMT0.41\sigma_{\ln M|T}\simeq0.41. Overall our results demonstrate the feasibility of ground-based weak-lensing scaling relation studies down to cool systems of 1keV\sim1keV temperature and highlight that the current data and samples are a limit to our statistical precision. As such we are unable to determine whether the validity of hydrostatic equilibrium is a function of halo mass. An enlarged sample of cool systems, deeper weak-lensing data, and robust modelling of the selection function will help to explore these issues further

    Galaxy bias from galaxy–galaxy lensing in the DES science verification data

    Get PDF
    We present a measurement of galaxy–galaxy lensing around a magnitude-limited (iAB < 22.5) sample of galaxies from the dark energy survey science verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias b and cross-correlation coefficient between the galaxy and dark matter overdensity fields r in each bin, using scales above 4 h−1 Mpc comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy–galaxy lensing with those obtained from galaxy clustering and CMB lensing for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al., while, in the lowest redshift bin (z ∼ 0.3), they show some tension with the findings in Giannantonio et al. We measure b· r to be 0.87 ± 0.11, 1.12 ± 0.16 and 1.24 ± 0.23, respectively, for the three redshift bins of width Δz = 0.2 in the range 0.2 < z < 0.8, defined with the photometric-redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10–20 per cent level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin (z ∼ 0.3), where we find r = 0.71 ± 0.11 when using TPZ, and 0.83 ± 0.12 with BPZ

    Recent history, current status, conservation and management of native mammalian carnivore species in Great Britain

    Get PDF
    1. After historical declines in population sizes and ranges, we compare and contrast the recent history and contemporary variation in the status of Great Britain's eight native mammalian carnivore species from the 1960s to 2017. 2. Wildcat Felis silvestris conservation status is unfavourable and is masked by hybridisation with domestic cats Felis catus. Red foxes Vulpes vulpes remain widespread but are currently declining. European otter Lutra lutra, European pine marten Martes martes and European polecat Mustela putorius populations are characterised by rapid recovery. Otters have almost completely recolonised Great Britain, polecats have expanded their range throughout southern Britain from refugia in Wales and pine martens have expanded their range from the Scottish Highlands. European badgers Meles meles have generally increased in population density. Status assessments of stoats Mustela erminea and weasels Mustela nivalis are data‐deficient but available evidence suggests that stoats may have increased while weasels may have declined. 3. Anthropogenic processes influencing carnivore status include legal protections, habitat quality, reintroductions, predator control, pollutants, hybridisation and diseases and their associated control practices. Population effects of contaminants, such as anticoagulant rodenticides, remain poorly characterised. The widespread interface with domestic and feral cats makes the wildcat's situation precarious. Recent declines in rabbit Oryctolagus cuniculus populations are a concern, given that several carnivore species depend on them as food. 4. We conclude that, with the exception of the wildcat, the status of Great Britain's mammalian carnivores has markedly improved since the 1960s. Better understanding of the social aspects of interactions between humans and expanding predator populations is needed if conflict is to be avoided and long‐term co‐existence with people is to be possible
    corecore