53 research outputs found

    DDIT4 (DNA-damage-inducible transcript 4)

    Get PDF
    Review on DDIT4 (DNA-damage-inducible transcript 4), with data on DNA, on the protein encoded, and where the gene is implicated

    Abrogating GPT2 in triple negative breast cancer inhibits tumor growth and promotes autophagy

    Get PDF
    Uncontrolled proliferation and altered metabolic reprogramming are hallmarks of cancer. Active glycolysis and glutaminolysis are characteristic features of these hallmarks and required for tumorigenesis. A fine balance between cancer metabolism and autophagy is a prerequisite of homeostasis within cancer cells. Here we show that glutamate pyruvate transaminase 2 (GPT2), which serves as a pivot between glycolysis and glutaminolysis, is highly upregulated in aggressive breast cancers, particularly the triple negative breast cancer (TNBC) subtype. Abrogation of this enzyme results in decreased TCA cycle intermediates, which promotes the rewiring of glucose carbon atoms and alterations in nutrient levels. Concordantly, loss of GPT2 results in an impairment of mechanistic target of rapamycin complex 1 (mTORC1) activity as well as the induction of autophagy. Furthermore, in vivo xenografts studies have shown that autophagy induction correlates with decreased tumor growth and that markers of induced autophagy correlate with low GPT2 levels in patient samples. Taken together, these findings indicate that cancer cells have a close network between metabolic and nutrient sensing pathways necessary to sustain tumorigenesis, and that aminotransferase reactions play an important role in maintaining this balance

    Physiological trade-offs associated with fasting weight loss, resistance to exercise and behavioral traits in farmed gilthead sea bream (Sparus aurata) selected by growth

    Get PDF
    Three gilthead sea bream families representative of slow, intermediate and fast heritable growth in the Spanish PROGENSA (R) selection program were used to uncover the effects of such selection on energy partitioning through measurements of fasting weight loss, swimming performance and behavioral traits in one- and two-year-old fish. Firstly, selection for fast growth significantly increased fasting weight loss and decreased the hormonal ratio of circulating Igf-i/Gh in short-term fasting fish (17 days). This is indicative of a stronger negative energy balance that explains the reduced compensatory growth of fast-growing fish during the subsequent short-term refeeding period (7 days). Selection for fast growth also decreased the critical speed (Ucrit, 6-7 BL sxfffd; 1) at which fish become exhausted in a swim tunnel respirometer. The maximum metabolic rate (MMR), defined as the maximum rate of oxygen consumption during forced exercise, was almost equal in all fish families though the peak was achieved at a lowest speed in the fast-growing family. Since circulating levels of lactate were also slightly decreased in freeswimming fish of this family group, it appears likely that the relative energy contribution of anaerobic metabolism to physical activity was lowered in genetically fast-growing fish. Selection for heritable growth also altered activity behavior because slow-growing families displayed an anticipatory food response associated with more pronounced daily rhythms of physical activity. Also, respiratory frequency and body weight showed and opposite correlation in slow- and fast-growing free-swimming fish as part of the complex trade-offs of growth, behavior and energy metabolism. Altogether, these results indicate that selective breeding for fast growth might limit the anaerobic fitness that would help to cope with limited oxygen availability in a scenario of climate change.We acknowledge the support of Veronica de las Heras and the Animalarium Service of IATS (Felix Alvarez and Jose Ramon Mateo) for their support in fish rearing

    Is REDD1 a Metabolic Éminence Grise?

    Get PDF
    Regulated in development and DNA damage response 1 (REDD1) has been functionally linked to the control of diverse cellular processes due, at least in part, to its ability to repress mammalian or mechanistic Target of Rapamycin (mTOR) Complex-1 (mTORC1), a key protein complex controlled by hormonal and nutrient cues. Notably, emerging evidence suggests that REDD1 also regulates several pathways involved in modulating energy balance and metabolism. Herein, we discuss evidence implicating REDD1 as a key modulator of insulin action and metabolic function, including its potential contribution to mitochondrial biology and pancreatic islet function. Collectively, the available evidence suggests that REDD1 has a more prominent role in energy homeostasis than was previously thought, and implicates REDD1 as a potential therapeutic target for treatment of metabolic disorders

    Data S1: Raw data

    Get PDF
    Background The increased demand for fish protein has led to the intensification of aquaculture practices which are hampered by nutritional and health factors affecting growth performance. To solve these problems, antibiotics have been used for many years in the prevention, control and treatment against disease as well as growth promoters to improve animal performance. Nowadays, the use of antibiotics in the European Union and other countries has been completely or partially banned as a result of the existence of antibiotic cross-resistance. Therefore, a number of alternatives, including enzymes, prebiotics, probiotics, phytonutrients and organic acids used alone or in combination have been proposed for the improvement of immunological state, growth performance and production in livestock animals. The aim of the present study was to evaluate two commercially available feed additives, one based on medium-chain fatty acids (MCFAs) from coconut oil and another with a Bacillus-based probiotic, in gilthead sea bream (GSB, Sparus aurata), a marine farmed fish of high value in the Mediterranean aquaculture. Methods The potential benefits of adding two commercial feed additives on fish growth performance and intestinal health were assessed in a 100-days feeding trial. The experimental diets (D2 and D3) were prepared by supplementing a basal diet (D1) with MCFAs in the form of a sodium salt of coconut fatty acid distillate (DICOSAN®; Norel, Madrid, Spain), rich on C-12, added at 0.3% (D2) or with the probiotic Bacillus amyloliquefaciens CECT 5940, added at 0.1% (D3). The study integrated data on growth performance, blood biochemistry, histology and intestinal gene expression patterns of selected markers of intestinal function and architecture. Results MCFAs in the form of a coconut oil increased feed intake, growth rates and the surface of nutrient absorption, promoting the anabolic action of the somatotropic axis. The probiotic (D3) induced anti-inflammatory and anti-oxidant effects with changes in circulating cortisol, immunoglobulin M, leukocyte respiratory burst, and mucosal expression levels of cytokines, lymphocyte markers and immunoglobulin T. Discussion MCFA supplementation showed positive effects on GSB growth and intestinal architecture acting mainly in the anterior intestine, where absorption takes place. The probiotic B. amyloliquefaciens CECT 5940 exhibited key effects in the regulation of the immune status inducing anti-inflammatory and anti-oxidant effects which can be potentially advantageous upon infection or exposure to other stressors. The potential effects of these feed additives in GSB are very promising to improve health and disease resistance in aquaculture

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure

    Full text link
    corecore