531 research outputs found

    Increasing Tetrahydrobiopterin in Cardiomyocytes Adversely Affects Cardiac Redox State and Mitochondrial Function Independently of Changes in NO Production

    Get PDF
    Tetrahydrobiopterin (BH4) represents a potential strategy for the treatment of cardiac remodeling, fibrosis and/or diastolic dysfunction. The effects of oral treatment with BH4 (Sapropterin™ or Kuvan™) are however dose-limiting with high dose negating functional improvements. Cardiomyocyte-specific overexpression of GTP cyclohydrolase I (mGCH) increases BH4 several-fold in the heart. Using this model, we aimed to establish the cardiomyocyte-specific responses to high levels of BH4. Quantification of BH4 and BH2 in mGCH transgenic hearts showed age-based variations in BH4:BH2 ratios. Hearts of mice (\u3c6 \u3emonths) have lower BH4:BH2 ratios than hearts of older mice while both GTPCH activity and tissue ascorbate levels were higher in hearts of young than older mice. No evident changes in nitric oxide (NO) production assessed by nitrite and endogenous iron–nitrosyl complexes were detected in any of the age groups. Increased BH4 production in cardiomyocytes resulted in a significant loss of mitochondrial function. Diminished oxygen consumption and reserve capacity was verified in mitochondria isolated from hearts of 12-month old compared to 3-month old mice, even though at 12 months an improved BH4:BH2 ratio is established. Accumulation of 4-hydroxynonenal (4-HNE) and decreased glutathione levels were found in the mGCH hearts and isolated mitochondria. Taken together, our results indicate that the ratio of BH4:BH2 does not predict changes in neither NO levels nor cellular redox state in the heart. The BH4 oxidation essentially limits the capacity of cardiomyocytes to reduce oxidant stress. Cardiomyocyte with chronically high levels of BH4 show a significant decline in redox state and mitochondrial function

    Inactivation of Aconitase by Tetrahydrobiopterin in DArgic Cells: Relevance to PD

    Get PDF
    Oxidative damage is thought to be a major cause of the progression of dopamine (DA)rgic neurodegeneration as in Parkinson's disease. We have previously reported that tetrahydrobiopterin (BH4), an endogenous molecule required for DA synthesis, exerts oxidative stress to DA-producing cells and facilitates the production of DA quinone. It is known that aconitase, present in both mitochondrial and cytosolic forms, act as an reactive oxygen species (ROS) sensor, and that their inactivation leads to further generation of ROS. In the present study we investigated whether the BH4-associated vulnerability of DA cells might involve aconitase. In DArgic cell line CATH.a, BH4 treatment caused reduction of activity of both mitochondrial and cytosolic aconitases, and this appeared to be due to direct inactivation of the pre-existing enzyme molecules. Although most of the activity reduced by BH4 was increased upon reactivation reaction under a reducing condition, the restoration was not complete, suggesting that irreversible and covalent modification has occurred. The aconitase inactivation was exacerbated in the presence of DA and attenuated in the presence of tyrosine hydroxylase inhibitor a-methyl-p-tyrosine, suggesting the involvement of DA. The degree of inactivation increased when the cells were treated with the quinone reductase inhibitor dicoumarol and decreased in the presence of quinone reductase inducer sulforaphane. Taken together, BH4 appeared to lead to both reversible and irreversible inactivation of aconitase and that this is facilitated by the presence of DA and accumulation of DA quinone

    Tetrahydrobiopterin modulates ubiquitin conjugation to UBC13/UBE2N and proteasome activity by S-nitrosation

    Get PDF
    Nitric Oxide (NO) is an intracellular signalling mediator, which affects many biological processes via the posttranslational modification of proteins through S-nitrosation. The availability of NO and NOS-derived reactive oxygen species (ROS) from enzymatic uncoupling are determined by the NO synthase cofactor Tetrahydrobiopterin (BH4). Here, using a global proteomics “biotin-switch” approach, we identified components of the ubiquitin-proteasome system to be altered via BH4-dependent NO signalling by protein S-nitrosation. We show S-nitrosation of ubiquitin conjugating E2 enzymes, in particular the catalytic residue C87 of UBC13/UBE2N, leading to impaired polyubiquitylation by interfering with the formation of UBC13~Ub thioester intermediates. In addition, proteasome cleavage activity in cells also seems to be altered by S-nitrosation, correlating with the modification of cysteine residues within the 19S regulatory particle and catalytic subunits of the 20S complex. Our results highlight the widespread impact of BH4 on downstream cellular signalling as evidenced by the effect of a perturbed BH4-dependent NO-Redox balance on critical processes within the ubiquitin-proteasome system (UPS). These studies thereby uncover a novel aspect of NO associated modulation of cellular homeostasis

    The antimalarial drug primaquine targets Fe–S cluster proteins and yeast respiratory growth

    Get PDF
    Malaria is a major health burden in tropical and subtropical countries. The antimalarial drug primaquine is extremely useful for killing the transmissible gametocyte forms of Plasmodium falciparum and the hepatic quiescent forms of P. vivax. Yet its mechanism of action is still poorly understood. In this study, we used the yeast Saccharomyces cerevisiae model to help uncover the mode of action of primaquine. We found that the growth inhibitory effect of primaquine was restricted to cells that relied on respiratory function to proliferate and that deletion of SOD2 encoding the mitochondrial superoxide dismutase severely increased its effect, which can be countered by the overexpression of AIM32 and MCR1 encoding mitochondrial enzymes involved in the response to oxidative stress. This indicated that ROS produced by respiratory activity had a key role in primaquine-induced growth defect. We observed that Δsod2 cells treated with primaquine displayed a severely decreased activity of aconitase that contains a Fe–S cluster notoriously sensitive to oxidative damage. We also showed that in vitro exposure to primaquine impaired the activity of purified aconitase and accelerated the turnover of the Fe–S cluster of the essential protein Rli1. It is suggested that ROS-labile Fe–S groups are the primary targets of primaquine. Aconitase activity is known to be essential at certain life-cycle stages of the malaria parasite. Thus primaquine-induced damage of its labile Fe–S cluster – and of other ROS-sensitive enzymes – could inhibit parasite development

    Effects of urate, a natural inhibitor of peroxynitrite-mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae

    Get PDF
    Urate, a natural peroxynitrite scavenger, has been used to investígate the possible role of peroxynitrite during plant-pathogen interactions. Urate greatly reduced lesión formation in Arabidopsis leaves treated with an abiotic peroxynitrite-generating system or with a peroxynitrite solution, indicating that it can act as an effective scavenger in planta. In the interaction with the avirulent Pseudomonas syringae pv. phaseolicola [avrRPNW], cell death in the inoculated área was strongly reduced by urate, without compromising disease resistance. In contrast, urate promoted discrete cell death in response to an isogenic Pseudomonas syringae (awRPMT), which did not trigger an HR when inoculated alone, and it induced resistance and arrest of pathogen growth. Scavenging of peroxynitrite did not modify the response of Arabidopsis to an avirulent strain of Xanthomonas campestris pv campestris, that showed a high resistance to NO and peroxynitrite. Our data indícate that peroxynitrite plays a significant role in the responses of plants to Pseudomonas syrin

    Reactive Oxygen and Nitrogen Species in Pathogenesis of Vascular Complications of Diabetes

    Get PDF
    Macrovascular and microvascular diseases are currently the principal causes of morbidity and mortality in subjects with diabetes. Disorders of the physiological signaling functions of reactive oxygen species (superoxide and hydrogen peroxide) and reactive nitrogen species (nitric oxide and peroxynitrite) are important features of diabetes. In the absence of an appropriate compensation by the endogenous antioxidant defense network, increased oxidative stress leads to the activation of stress-sensitive intracellular signaling pathways and the formation of gene products that cause cellular damage and contribute to the vascular complications of diabetes. It has recently been suggested that diabetic subjects with vascular complications may have a defective cellular antioxidant response against the oxidative stress generated by hyperglycemia. This raises the concept that antioxidant therapy may be of great benefit to these subjects. Although our understanding of how hyperglycemia-induced oxidative stress ultimately leads to tissue damage has advanced considerably in recent years, effective therapeutic strategies to prevent or delay the development of this damage remain limited. Thus, further investigation of therapeutic interventions to prevent or delay the progression of diabetic vascular complications is needed

    In vivo Bioimaging as a Novel Strategy to Detect Doxorubicin-Induced Damage to Gonadal Blood Vessels

    Get PDF
    INTRODUCTION: Chemotherapy may induce deleterious effects in normal tissues, leading to organ damage. Direct vascular injury is the least characterized side effect. Our aim was to establish a real-time, in vivo molecular imaging platform for evaluating the potential vascular toxicity of doxorubicin in mice. METHODS: Mice gonads served as reference organs. Mouse ovarian or testicular blood volume and femoral arterial blood flow were measured in real-time during and after doxorubicin (8 mg/kg intravenously) or paclitaxel (1.2 mg/kg) administration. Ovarian blood volume was imaged by ultrasound biomicroscopy (Vevo2100) with microbubbles as a contrast agent whereas testicular blood volume and blood flow as well as femoral arterial blood flow was imaged by pulse wave Doppler ultrasound. Visualization of ovarian and femoral microvasculature was obtained by fluorescence optical imaging system, equipped with a confocal fiber microscope (Cell-viZio). RESULTS: Using microbubbles as a contrast agent revealed a 33% (P<0.01) decrease in ovarian blood volume already 3 minutes after doxorubicin injection. Doppler ultrasound depicted the same phenomenon in testicular blood volume and blood flow. The femoral arterial blood flow was impaired in the same fashion. Cell-viZio imaging depicted a pattern of vessels' injury at around the same time after doxorubicin injection: the wall of the blood vessels became irregular and the fluorescence signal displayed in the small vessels was gradually diminished. Paclitaxel had no vascular effect. CONCLUSION: We have established a platform of innovative high-resolution molecular imaging, suitable for in vivo imaging of vessels' characteristics, arterial blood flow and organs blood volume that enable prolonged real-time detection of chemotherapy-induced effects in the same individuals. The acute reduction in gonadal and femoral blood flow and the impairment of the blood vessels wall may represent an acute universal doxorubicin-related vascular toxicity, an initial event in organ injury
    corecore