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Abstract 
 
 
Hypochlorous acid and its conjugate base, hypochlorite ions, produced in inflammatory 

conditions, may produce chloramides of glycosaminoglycans, the latter being significant 

components of the extracellular matrix (ECM). This may occur through the binding of 

myeloperoxidase directly to the glycosaminoglycans.  The N-Cl group in the chloramides 

is a potential selective target for both reducing and oxidising radicals, leading possibly to 

more efficient and damaging fragmentation of these biopolymers relative to the parent 

glycosaminoglycans. To investigate the effect of the N-Cl group, ionising radiation has 

been used to produce quantifiable concentrations of the reducing radicals, the hydrated 

electron and the superoxide radical and also of the oxidizing radicals, hydroxyl, 

carbonate and nitrogen dioxide, all of which have been reacted with hyaluronan and 

heparin and their chloramides in the current study .  PAGE gels calibrated for molecular 

weight have allowed the consequent fragmentation efficiencies of these radicals to be 

calculated.   

Hydrated electrons were shown to produce fragmentation efficiencies of 100% and 25 % 

for hyaluronan chloramide (HACl) and heparin chloramide (HepCl), respectively. The 

role of the sulphate group in heparin in the reduction of fragmentation can be 

rationalized using mechanisms proposed by Davies and co-workers (Rees et al. J. Am. 

Chem. Soc. 125: 13719-13733; 2003) in which the initial formation of an amidyl 

radical leads rapidly to a  C-2 radical on the glucosamine moiety. The latter is 100% 

efficient in causing glycodsidic bond breakage in HACl but only 25 % in HepCl, the role 

of the sulphate group being to favour the non-fragmentory routes for the C-2 radical. The 

weaker reducing agent, the superoxide radical, did not cause fragmentation of either 

HACl or HepCl although kinetic reactivity had been demonstrated in earlier studies.  
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Experiments using the oxidizing radicals, hydroxyl and carbonate, both potential in vivo 

species, show significant increases in fragmentation efficiencies for both HACl and 

HepCl, relative to the parent molecules.  The carbonate radical has been shown to be 

involved in site-specific reactions at the N-Cl groups, reacting via abstraction of Cl, to 

produce the same amidyl radical produced by one-electron reductants such as the 

hydrated electron. As for the hydrated electrons, the data support fragmentation 

efficiencies of 100% and 29% for reaction of carbonate radicals at N-Cl for HACl and 

HepCl respectively. For the weaker oxidant, nitrogen dioxide, no fragmentation was 

observed, probably attributable to a low kinetic reactivity and low reduction potential. 

It seems likely therefore that the N-Cl group can direct damage to extracellular matrix  

glycosaminoglycan chloramides  which may be produced under inflammatory conditions. 

The in vivo species , the carbonate radical is also much more likely to be site-specific in 

its reactions with such components of the ECM than the hydroxyl radical.  

 
Graphical abstract 
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Introduction 
 
The extracellular matrix (ECM) is made up of huge multi-molecular complexes with 

arrays of link proteins and aggrecan molecules along a central hyaluronan backbone.  

Hyaluronan (HA) is bound by a number of ECM and cell surface proteins [1,2]. 

With this central structural function, HA is a particularly important component of the ECM 

[3, 4], as demonstrated by the fact that a hyaluronan synthase-2 knockout is 

embryonically lethal in mice [5]. HA also provides a hydrated environment [6] for 

growing, moving and renewing cells and tissues [7], activates signalling events in cells 

and is involved in moderating many cellular processes, including proliferation, migration, 

adhesion and  apoptosis [8-11]. HA appears to have a range of significant biological 

functions dependent upon its molecular mass. Large molecular mass fragments are 

involved in space-filling and immunosuppressive roles, whilst smaller HA fragments have 

been shown to be pro-inflammatory and angiogenic; oligosaccharides may be involved 

in cell signalling (reviewed in [12]). 

Oxidative damage of the extracellular matrix components by either enzymatic or non-

enzymatic pathways may have implications for the initiation and progression of a range 

of human diseases. These include arthritis, kidney disease, cardiovascular disease, lung 

disease, periodontal disease and chronic inflammation. Oxidative damage to hyaluronan 

by reactive oxidative species, and in particular by free radicals, has received much 

attention, largely through the ease of monitoring its fragmentation using viscometric 

techniques, which is reviewed in [13]. The potential mechanism of oxidative damage to 

the ECM and its role in human pathologies has also been discussed in a recent review 

[14]. 
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Several reactive species may be formed at sites of inflammation, including superoxide ( 

O2
.-) , hydrogen peroxide, hypochlorite (HOCl/ OCl-) and peroxynitrite (ONOO- / ONOOH 

). The latter species may be formed in vivo by the diffusion-controlled reaction between 

superoxide and nitric oxide ( k= 6.7 x 109 M-1 s-1) [15] where nitric oxide is generated by 

macrophage inducible nitric oxide synthase and endothelial nitric oxide synthase [16,17] 

Our previous studies on HA have measured HA fragmentation yields as a proportion of 

quantifiable fluxes of free radicals produced by ionising radiation. For this purpose, both 

viscosity changes and a combination of gel permeation chromatography with multi-angle 

laser light scattering were used to measure changes in molecular weight of the 

polydispersed hyaluronan.  In this way, the efficiencies of fragmentation of HA by a 

range of free radicals and reactive oxidative species including hydroxyl radicals, 

carbonate radicals, dibromide and dichloride radical anions and peroxynitrite were 

determined [18,19]. 

The fragmentation of hyaluronan and other glycosaminoglycans has also been 

investigated intensively by Davies and co-workers using both electron paramagnetic 

resonance (EPR) spectroscopy and sensitive PAGE techniques. The use of the latter 

technique showed the novel and potentially biologically significant result that 

peroxynitrous acid, carbonate and hydroxyl radicals react largely in a site-specific 

process to produce an array of HA fragments, in a “ladder-type display” each separated 

from its neighbour by the molecular mass of the repeating disaccharide unit in HA, thus 

mimicking to a significant extent the action of the enzyme, hyaluronidase [20,21]. Similar 

site-selective fragmentation was also observed when glycosaminoglycan chloramides 

(formed through reaction with hypochlorite) were reduced by copper (I) ions and 

superoxide anion radicals [22,23].  
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The formation of chloramides and chloramines from the reaction of hypochlorite with 

amides and amines respectively was demonstrated in an early study [24] and is 

suggested to be a key process in inflammation, in which hypochlorite (from 

myeloperoxidase) may produce glycosaminoglycan chloramides. In vitro studies of the 

reactions of hypochlorite with glycosaminoglycans have indeed demonstrated that 

chloramides are produced in yields and rates of reaction which are dependent upon both 

pH and ratio of hypochlorite to glycosaminoglycan concentrations [25, 26]  and have  

demonstrated that  such derivatives may accelerate the fragmentation of 

glycosaminoglycans within the ECM [24]. Chloramides are weak oxidizing agents and 

are therefore potential biological targets for reducing radicals and other reducing agents 

through reaction at the N-Cl group. Indeed, it has been shown that both superoxide 

radicals and transition metal ions cause the fragmentation of HA through reaction with its 

chloramide derivative [22]. In the case of the heavily-sulphated heparan sulphate, both 

Cu(I) and Fe(II) were also found to produce fragmentation of its chloramide derivative. 

An estimate of the efficiency of the fragmentation process was made in a PAGE 

experiment using a standard octasaccharide for calibration of molecular weight in a 

completely decomposed chloramide: a yield of 50% was estimated [27]. 

 

In this study, ionizing radiation was used to produce selected oxidizing and reducing free 

radicals whose concentrations can be both determined with both significant accuracy 

and precision, and can be controlled. In this way, free radicals can be reacted with the 

chloramide derivatives of hyaluronan and heparin, the latter being the most heavily-

charged glycosaminoglycan. The oxidizing radicals were hydroxyl (.OH), carbonate 

(CO3
.-) and nitrogen dioxide (NO2

.) , all potential in vivo species produced via 

peroxynitrite and other reaction pathways [28,29].  The reducing radicals selected in 



 7

this study were the hydrated electron ( e-
aq) and superoxide (O2

.-). The hydrated 

electron   e-
aq is strongly reducing and may be expected to be highly, perhaps 

100%, selective in its attack. It acted as a model in this study for less strongly-

reducing agents such as glutathione disulphide anion radicals. Superoxide, a much 

weaker reducing species, was also investigated in this study. The main aim was to 

measure, for the first time, the efficiencies of fragmentation of hyaluronan and heparin 

chloramides by all these free radicals and thereby to deduce, by comparison with 

experiments carried out under the same conditions with the parent glycosaminoglycans, 

whether the N-Cl group confers selectivity of attack to enhance fragmentation. Any 

enhanced  fragmentation efficiency seen with chloramide derivatives relative to parent 

molecules is of clear relevance to inflammation within the extracellular matrix where 

these derivatives are likely to be formed and may therefore present site-specific targets 

for free radicals and other reactive species. 

 

Materials and methods 

(i) Materials 

Sodium formate, hypochlorous acid, tert-butanol and sodium bicarbonate were all 

analytical grade (Sigma Aldrich). Hyaluronan (80kDa) was a gift from Novozymes ; 

heparin sodium salt (Alfa Aesar) was of  research grade (the structures of hyaluronan 

and heparin are shown in Scheme 1). De-ionised water  used for buffer preparation was 

prepared by a Select Purewater 300 system (resistivity 18 MΩ). 
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Scheme 1. Structures of hyaluronan and heparin. 

 

(ii) Preparation of chloramide derivatives 

The hyaluronan chloramide was prepared from the reaction of hyaluronan (4mg/ml) in 

phosphate buffer, with pH- adjusted HOCl (1mM) at 37°C for 300 minutes followed by 

300 minutes incubation at room temperature to ensure all the HOCl reacted. After this 

period, the reaction was complete as determined by the UV absorption spectrum of the 

reaction solution. Heparin chloramide was prepared by reacting 9.7mM heparin with 

9mM HOCl at pH 6.5 for 180 minutes followed by extensive dialysis. A typical 

hyaluronan chloramide preparation should be viewed as a substituted hyaluronan  

comprising 90% N-H groups and 10 %  N-Cl (chloramide) groups. For HepCl, there are 

approximately 33% N-H groups and 66% N-Cl groups in the substituted polymer. All 

chloramide solutions in this study, referred to as either HACl or HepCl , contain N-H and 

N-Cl groups in these proportions. The probability of unsubstituted glycosaminoglycans ( 

i.e. HA or Hep) is very low and can be ignored.  The synthesised chloramides were 

stored at 4°C and used in gamma radiolysis experiments as soon as possible thereafter.  

The chloramide concentrations of both HACl and HepCl preparations prior to gamma 

radiolysis were determined using the TNB (5-thio-2-nitrobenzoic acid)  assay. Dilutions 
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of the chloramide solutions were selected to match the 35µM-45µM concentrations of 

TNB. After 30 minutes incubation, the absorbance of the TNB thiol oxidation product was 

measured at 412nm (Ɛ=13600 M-1 cm-1, [24]).  

(iii) Generation of selected radicals by water radiolysis 

Reducing radicals 

The hydrated electron , e-
aq, ( E( H2O/ e-

aq) = -2.9 V [30] ) and the superoxide radical, O2
.- 

, ( E(O2/O2
.-) = -0.33 V [31] were produced by established radiation chemical techniques, 

as follows: 

Hydrated electrons, e-
aq, were generated by the radiolysis of argon-saturated 0.1M tert-

butanol  solutions.   Radiolysis of aqueous solutions produces the primary radicals ,  eaq , 

hydrogen atoms ( H.) and hydroxyl radicals, (.OH), as shown in reaction (1). In the 

presence of tert-butanol, hydroxyl radicals are scavenged to produce non-reactive 

species allowing the reactivity of the hydrated electron to be studied independently. 

Superoxide radicals were produced by the radiolysis of oxygenated solutions of 0.1M 

formate. Under these conditions both formate radicals and hydrated electrons react 

rapidly with oxygen to produce superoxide radicals, as shown in reactions (1) to (6). The 

yields of hydrated electrons and superoxide are 0.28 and 0.62 μmol J-1 respectively. All 

solutions contained typically 0.1mM chloramide ( HACl)  or 0.4 mM chloramide  (HepCl) 

(based on average disaccharide molecular weights). 

 

 H2O    eaq,  H
. ,  .OH , H2 , H2O2, H3O

+     (1) 

 

 e-
aq + N2O  .OH + OH- + N2    (2) 

 .OH + HCOO-  CO2
.- + H2O    (3) 

 H.  + HCOO-  CO2
.- + H2    (4) 
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 CO2
.- + O2  O2

.-     (5) 

 e-
aq  + O2  O2

.-     (6) 

 

Oxidising radicals 

The hydroxyl radical (E(.OH/OH-) = 1.9 V [32]) , the carbonate radical (E(CO3
.-/CO3

2-) 

=1.59 V [33]) and the nitrogen dioxide radical ( E(NO2
./NO2

-)=1.04 V [34])  were 

produced as follows:  

Hydroxyl radicals, .OH, were generated by the radiolysis of nitrous oxide-saturated  

solutions at pH 7.0, as in reactions (1) and (2).  Carbonate radicals, CO3
.-, were 

produced by the radiolysis of nitrous oxide saturated solutions of 0.1 M sodium 

carbonate at pH 8.5. Under these conditions, hydrated electrons and hydroxyl radicals 

produce carbonate radicals, as shown by reactions (1), (2) and (7) [35,36] . The 

carbonate anion radical,  CO3
.-, exists in equilibrium with the protonated form, HCO3

. with 

a very low pKa  (< 0 [37] ), and is therefore the predominant species at the pH values 

covered in this study .  Nitrogen dioxide radicals, NO2
., were produced by the radiolysis 

of nitrous oxide saturated solutions of 0.1 M sodium nitrite [38]. Under these conditions, 

nitrogen dioxide radicals are formed efficiently via reactions (1), (2) (and (8). The yields 

of  .OH , CO3
.- and NO2 radicals are all 0.56 μmol J-1 . All solutions contained typically 

0.1mM -1mM  chloramide (HACl) or 0.4mM chloramide (HepCl) (based on average 

disaccharide molecular weights)  of hyaluronan chloramide or heparin chloramide).  

  

 

  .OH + HCO3
- / CO3

2-  CO3
.- + H2O    (7) 

   

.OH + NO2
-  NO2 + H2O     (8) 
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Irradiation doses of up to 100Gy were delivered to solutions of HA, Hep, HACl and 

HepCl under the conditions described above. Thus, concentrations of free radicals up to 

60 μM could be achieved, the dose delivered being adjusted according to the amount of 

biopolymer fragmentation observed. 

 

(iv) Irradiation of chloramide solutions 

Gamma radiolysis studies were carried out using a model 812 Cobalt-60 source (Foss 

Therapy Services, Inc), capable of supplying an absorbed dose of up to 450 Gy per 

minute. The dose rate used in these experiments was 14-28 Gy per minute. All 

experiments were carried out at room temperature. Solutions for irradiation experiments 

involving the hydrated electron, hydroxyl radicals, carbonate radicals, nitrogen dioxide 

and superoxide radicals were saturated, as appropriate, with research grade nitrous 

oxide, argon or oxygen. 

 

(v) Analysis of changes in the molecular weight distributions  

 

The samples were analysed to determine the extent of fragmentation of the 

glycosaminoglycan using modified poly-acrylamide gel electrophoresis (PAGE), (Min 

and Cowman, 1986). 10 % and 20% vertical slab polyacrylamide gels (0.1x16x20 cm) 

were run using a Bio-Rad Protean II xi multi cell system. 45μl of the chloramide sample 

was added to 5μl of loading buffer (10x TBE (Tris-Borate- EDTA)  buffer, 0.1M tris/0.25M 

borate/0.001M EDTA) containing 2M sucrose. This 50μl sample volume was loaded onto 

gels covered with 1X TBE running buffer. 25μl of bromophenol blue dye (0.02% in 2M 

sucrose) was applied to a well with no sample and was used as a tracking dye. For 

hyaluronan,the gels were run initially at 125V (20mA) for 20 minutes and then at 250V 
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(40mA) for approximately 100 minutes. For heparin, the gels were run for 4.5 hours at 

200 V and for 9 hours at 100V. At this point, the bromophenol blue tracking dye was 

within 1.5 cm of the gel bottom, and the gels were immediately transferred to shallow 

non-stick trays. The polymer samples were fixed in the gel matrix by soaking the gel in 

0.5% alcian blue dye dissolved in deionised water for 30 minutes in the dark. The gels 

were then de-stained using several changes of deionised water. The fixed gel was 

scanned using a high resolution (6400 dpi x 9600 dpi) Epson Perfection V500 Photo flat 

bed scanner interfaced to a PC. The captured images were visualised and digitised 

using Quantiscan ® software v3 (BioSoft).  

The gpc -MALLS system consisted of a degasser ERC-3215α (ERC, Japan), a 

constametric ® 3200 MS pump (Thermo separation Products, FL), an injection valve 

with 1000µl loop (Reodyne 7725i) fitted inside a temperature regulated oven (Gilson, 

Model 831, UK) and a DAWN-DSP multi-angle light scattering photometer (Wyatt 

Technology, Santa Barbara, USA) equipped with He-Ne laser (λ = 633nm). 

Simultaneous concentration detection was performed using a calibrated differential 

refractometer (RI 2000, Schambek, Germany). A refractive index increment dn/dc value 

of 0.150 was used in the calculations. The mobile phase was 0.1M NaCl containing 

0.005% NaN3 filtered through 0.2µm pore size cellulose nitrate membrane. The samples 

injected were subjected to prior filtration through a nylon filter of 0.45µm pore size. A set 

of two columns SB-803HQ & SB-806HQ (8mmx300mm, Shodex OHpak, Japan, 

exclusion limits 1x105 and 2x107 g/mol) was used for the separation. The flow rate for the 

eluent was 0.45 ml/min. The Berry fitting method with linear fit was used for data 

processing in ASTRA software (Version 4.90.08). All measurements were performed at 

room temperature. 

To calibrate the Rf values in the PAGE scans for molecular mass , solutions of 

hyaluronan and heparin were irradiated in order to fragment these biomolecules . 



 13

Irradiation doses of upto 100 Gy were delivered and the molecular weight distribution 

determined using the gpc/MALLS technique. These solutions were also subjected to 

PAGE . By matching the molecular weight distribution from the gpc/MALLS experiments 

to the PAGE scans, correlations of molecular mass v Rf were obtained. This allowed the 

use of PAGE as a more efficient method of molecular mass distribution measurement for 

the other irradiation experiments in which various oxidising and reducing radicals were 

reacted with both hyaluronan and heparin. 

The amount of biopolymer fragmentation, arising from reaction of the selected radicals 

,was measured from the changes in the PAGE gels .  Each gel, after densitometric 

scanning, could thus be transformed into a plot of stain intensity v molecular mass ( Mi). 

By assuming that the stain intensity at a particular Rf (or Mi) value is directly proportional 

to the weight of biomolecules of that Mi (i.e. is proportional to NiMi where Ni is the 

number of molecules of mass Mi), the number average molecular weight, Mn can be 

calculated from the expression, ∑ NiMi / ∑ Ni .  

 

 

Results and Discussion 

(i) Reducing radicals 

Figure 1a shows a typical PAGE gel obtained when hydrated electrons (up to 16 μM at a 

50Gy dose) are reacted with 0.1mM hyaluronan chloramide (HACl). The gel shows a 

clear transition towards lower molecular weights of the biopolymers in the solution with 

increasing radiation dose. The preparation of HACl (see Materials and Methods) 

produces a substituted hyaluronan in which 1 out of 10 N-H groups are replaced by an 

N-Cl group. Since hydrated electrons and other reducing agents react very slowly, if at 

all, with the parent molecule, HA [39],  (also confirmed in this study, but data not shown, 
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in a control experiment in which the parent biomolecule, HA, was reacted with hydrated 

electrons which showed no change in the PAGE scans relative to the unirradiated HA),  

only the N-Cl group reacts, with anticipated rate constants close to those expected for a 

diffusion-controlled reaction [40]. Figure 1b shows the respective densitometric scan and 

stain intensity v Rf plots for reaction of the hydrated electron with HACl . In the latter 

plots, only Mi values greater than about 9000 Da could be measured. From each of the 

molecular weight distributions in Figure 1c, the Mn value was calculated and hence the 

number of chain breaks per biomolecule could be determined from the expression, (Mn
0 

– Mn
p) / Mn

p where Mn
0 and Mn

p are the number average molecular weights at zero dose 

and at a specified radiation dose respectively. The concentration of chain breaks ([CB]) 

is therefore equal to CB per biomolecule x [HA]0 where the latter is calculated from the 

Mn value of the unirradiated hyaluronan. A plot of the [CB] v [e-
aq], s shown in Figure 2 in 

which there is a linear relationship between the two variables. The slope of plot therefore 

represents the efficiency of fragmentation by the hydrated electron. Unlike many 

irradiation experiments where the yields of product are often only linear in the lower dose 

ranges, attributable to the target free radical starting to react with the product and not the 

substrate, here the products, smaller fragments of the biopolymers, are similar , if not 

otherwise identical, to the parent target molecule and so a linear relationship is more 

likely. The slope in Figure 2 for HACl indicates that e-
aq reacts with an efficiency of 

108+/- 11 %, that is, every reaction leads to fragmentation of hyaluronan chloramide. In 

similar experiments, in which the hydrated electron was reacted with solutions containing 

0.4 mM heparin chloramide (HepCl), the fragmentation efficiency was found to be much 

lower at 25 +/- 3 % as shown in Figure 2.   
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Fig. 1. (a) Alcian blue-stained PAGE gel showing depolymerization of HACl by hydrated 

electrons (side A) and hydroxyl electrons (side B) at pH 7.5 (also shown is the 

migration of the tracking dye bromophenol blue). (b) The densitometric scans of the gels 

in (A) showing dose-dependent depolymerization of HACl by the hydrated electron 

at 0, 10, 20, 30, and 50 Gy and also by the hydroxyl radical at irradiation doses of 0, 10, 25, 

50, and 100 Gy. (All solutions were prepared in pH 7.5, 0.01 M phosphate buffer). 

(c) Stain intensity vs Mi for the hydrated electron- and hydroxyl radical-induced 

fragmentation of HACl. 
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Fig. 2. The effect of [e could be calculated. Studies of alkylamino radicals in aq] on the 

fragmentation yields of HACl and HepCl 

 

In previous pulse radiolysis and laser flash photolysis studies, it has been shown that e-

aq  reacts rapidly with HACl and HepCl  with second-order rate constants of 2.2 x 109 M-1 

s-1 and 7.2 x 108 M-1 s-1 respectively [34]. In that study, it was assumed that the hydrated 

electron reacted solely at the N-Cl moiety to eliminate chloride, as shown in reaction (9) . 

This was supported by the lack of any demonstrable reaction of these species with the 

parent molecule, HA, and also by the absorption spectra of transient species attributable 

to carbon-centred free radicals formed on the glucosamine moiety [41].  The latter 

observation provided support for the 1,2 hydrogen shift mechanism for HACl proposed 

by Davies and co-workers  as shown in Scheme 2 in which a chloride ion is eliminated 

by one-electron reductants to form a nitrogen-centred radical in the first instance 

followed by rapid re-arrangement to produce the C-2 radical on the glucosamine moiety 
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and/or C-4 radicals on the uronic acid moiety [22].  Both EPR data and ion-exchange 

chromatography have been used to detect chloride in the one-electron reduction of 

glycosaminoglycan chloramides as well as in pulse radiolysis studies of the reaction of 

the hydrated electron with chloramines and amides which confirm that chloride ion is 

produced in yields of 100% [27]. 

 

   e-
aq + HACl / HepCl  HA. / Hep.  + Cl-   (9) 

 

Although reaction (9) must produce N-centred radicals in the first instance, these must 

be short-lived as only carbon-centred radicals could be detected [22,41].  

 

Scheme 2. Conversion of amidyl radical to the C-2 and C-4 radicals [27]. 
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In the current study, the high rate constants for the reaction of the hydrated electron with 

HACl and HepCl ensure that there can be no competing reactions with sub-micromolar 

concentrations of oxygen (as an impurity) which may be present in the argon used to de-

gas these solutions. The difference in fragmentation efficiencies of 108 +/- 11 % and 25 

+/- 3 % for HACl and HepCl respectively is therefore significant and presumably is 

attributable to the effect of the presence of sulphate groups and the associated higher 

negative charge in HepCl relative to HACl. These two biopolymers have large 

differences in charge density with heparin containing on average 2-3 sulphate groups 

per disaccharide unit whereas hyaluronan has one negative charge per disaccharide 

unit. From EPR studies of glycosaminoglycans, including sulphated derivatives such as 

heparin sulphate, two modes of transformation of the N-centred radical, the amidyl 

radical, have been proposed . One involves 1,2-hydrogen shift to produce a C-2 radical 

on the glucosamine moiety, the other is a 1,5-hydrogen shift to produce a C-4 radical on 

the glucuronic moiety. The EPR evidence appears to favour the production of C-4 

radicals [22,27]. However, evidence from time-resolved studies appears to support the 

formation of C-2 radicals since the transient spectra observed are consistent with those 

expected for carbon-centred radicals associated with an adjacent nitrogen atom such as  

RCONRCH2
. (where R can be H- or CH3-) [41]. It seems probable therefore that the 

100% fragmentation yield observed for HACl occurs via the C-2 radical on the 

glucosamine moiety with the subsequent β-scission being 100% effective. In the case of 

HepCl , two possibilities can be proposed; (i) that the latter β-scission process is not 

100% efficient and is in fact close to a value of 25% and that 75% of the C-2 radicals are 

involved in non-fragmentary routes; (ii) that the 1,5-hydrogen shift is favoured over the 

1,2-hydrogen shift to produce C-4 radicals on the uronic acid moiety with, for instance, 

75% of the amidyl radicals following this route. In the latter scenario, however, the 

efficiency of fragmentation would be close to zero via the 1,5-hydrogen shift route. On 
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balance, the transient spectra observed on the reaction of hydrated electrons with both 

HACl and HepCl support the formation of C-2 radicals [41], and thus the large difference 

in fragmentation efficiencies measured here are likely to be attributable to the effect of 

negatively charged sulphate groups on the β-scission process of the C-2 radicals in 

which a non-fragmentary pathway competes effectively. Scheme 3 shows these possible 

mechanisms. 

 

Scheme 3. Possible reactions pathways for C-2 and C-4 radicals after formation of 

hyaluronan and heparin amidyl radicals [27]. 
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The weak reducing agent, the superoxide radical was produced by the irradiation of 

oxygen-saturated 0.1mM and 0.8mM chloramide ( HACl) and 0.4mM chloramide (HepCl 

) solutions containing 0.1M formate at pH 9.5, as in reactions (1) and (3) – (6). Under 

these conditions, all primary radiolysis radicals produce superoxide. At chloramide ( 

HACl) concentrations of 0.1mM and 0.8mM and chloramide (HepCl) concentrations of 

0.4mM, <1%  of e-
aq  react directly with the chloramide . PAGE scans from these 

experiments (Figure 3 shows typical scans for 0.1mM HACl) show no change in 

molecular weight up to a dose of 100 Gy (equivalent to 62 μM superoxide) . At the higher 

0.8mM HACl concentration,  a barely-detectable movement of HACl polymers was 

observed in the PAGE gels ( not shown) with a limit of fragmentation efficiency based on 

the superoxide yield of less than or equal to 2%. This small amount of fragmentation is 

probably attributable therefore to the minor competing reaction of e-
aq with HACl. Direct 

measurements of the rate of reactions of superoxide with the chloramides of both 

hyaluronan and heparin have been made by generating superoxide through the laser 

flash photolysis of  air or oxygen-saturated persulphate solutions containing formate and 

either HACl or HepCl at pH 8.5 in borate buffer. The rate constants for the reaction of 

superoxide with HACl and HepCl were found to be similar, in the range 2.2 -2.7 x 103 M-1 

s-1 [42]. Despite this demonstration of a reaction, it would appear from the current study 

that it does not lead to fragmentation of HACl. In contrast, in a study by Rees et al [23], 

using SOTS-1 as a thermal source of superoxide, fragmentation of the  chloramides of 

hyaluronan and chondroitin sulphate was observed.  These workers  concluded, through 

the inhibitory effect of EDTA, that the superoxide reaction was mediated, at least in part, 

by Cu2+
aq , presumably through the redox cycling of Cu(II) and Cu(I) leading to reduction 

of the N-Cl group by Cu(I). An identical conclusion was also made for the chloramines 

and chloramides of heparan sulphate [27]. This indirect mechanism for reaction of 

superoxide with glycosaminoglycan chloramides may be in competition with the direct 
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reaction demonstrated in the time-resolved study [35]. At the relatively low 

concentrations of chloramides, 200–300 μM used in the earlier studies [23,27], as little 

as 1 nM of Cu2+
aq ,involved in effective redox cycling at pH 7.4, would be the main 

channel of reaction, since superoxide reacts at diffusion-controlled rates with Cu (I/II) 

aquo complexes. At the pH of 9.5 (where the lifetime of superoxide is much longer than 

at pH 7.4) and at the higher mM chloramide and chloramine concentrations used in the 

time-resolved study, the direct reaction would be dominant. In the current study, 

superoxide is generated by steady-state radiolysis where the steady-state 

concentrations of superoxide would be extremely low (sub-nanomolar) and so decay of 

superoxide via dismutation through reaction with its acidic form, HO2
. would be unlikely 

to be significant. More likely, is a reaction with sub-nanomolar concentrations of redox 

metal ions, particularly Cu2+
aq. However, this should lead to fragmentation as found by 

Rees et al [23]. It is thus difficult at present to reconcile the kinetic data [42], the SOTS-1 

studies [23,27] and the fragmentation data presented here. It may be that superoxide 

reduces the chloramide directly, as confirmed for other reducing radicals in the previous 

kinetic study [41] to produce the amidyl radical which may react rapidly with oxygen to 

produce a nitroxide species as found in previous studies of sterically-hindered amidyl 

and aminyl radicals  [43,44].  Ultimately a stable glycosaminoglycan nitroxide may be 

formed, as shown tentatively in Scheme 4. An estimate of the rate of conversion of the 

amidyl radical to a C-centred radical can be made from the kinetic study of the reaction 

of formate radicals with the chloramides in which the C-centred radical spectra are 

produced in a pseudo 1st order process which is [chloramide] dependent [41]. This 

suggests a rate of at least 5 x 106 s-1 for the amidyl to C-centred radical conversion. 

Thus, to ensure a good competition to form a glycosaminoglycan NO2 species, as in 

Scheme 4 ,  in the presence of 1 mM oxygen, a second order rate constant of 5 x 109 M-

1 s-1could be calculated.  Studies of alkylamino radicals in non-aqueous solvents have 
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shown that these radicals react rapidly with oxygen, in one case a rate constant of 2 x 

108 M-1 s-1 was measured [44]. It is therefore possible that fast reaction of the 

glycosaminoglycan amidyl radical with oxygen may also occur in the superoxide 

experiments. An alternative explanation is that the rapid transformation is too fast to 

allow the amidyl radical to react with oxygen and the C-2 radical  produced would rapidly 

be converted into a peroxy radical though reaction with oxygen. If the latter occurred, 

this would indicate that no fragmentation can take place from C-2 peroxy radicals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Densitometric scans of the Alcian blue-stained PAGE gels showing lack of 

depolymerization of HACl by the superoxide radical anion (0.8 mM HACl, pH 9.5, 0.01 M 

borate buffer). 
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Scheme 4. Possible reaction pathway to produce glycosaminoglycan nitroxides after 

reduction of the chloramide derivatives by superoxide radicals. 

 

Fig. 4. Effect of hydroxyl radical concentration on the fragmentation yields of HA 

and HACl. 
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Fig. 5. Effect of hydroxyl radical concentration on the fragmentation yields of Hep 

and HepCl. 

 

(ii) Oxidizing radicals 

Figures 1a, 1b and 1c show the PAGE gels, densitometric scans and molecular weight 

distributions for the hydroxyl radical induced fragmentation of HA and HACl. Figure 4 

shows the fragmentation yields , expressed as plots of chaín break concentration, [CB] v 

[.OH],  after reaction of  1 mM HA and 0.1 mM HACl with hydroxyl radicals, showing 

respective fragmentation efficiencies of 32% and 42%. In the kinetic study of the 

reactivity of hydroxyl radicals, it was shown that there was little difference in the 

measured rate constants of hydroxyl radical with HA and the N-Cl groups in HACl , 

values in the range (2.2 – 4.0) x 108 M-1 s-1  being calculated [42]. The hydroxyl radical 

thus reacts rapidly by H-abstraction with the many possible (up to 11) reactive C-H 

bonds in hyaluronan, each having a potential route to fragmentation. In the case of the 

HACl preparation, considered here as hyaluronan in which 1 out 10 N-H groups is 

substituted by N-Cl, it seems likely that attack at N-Cl is a more efficient route to 

fragmentation. Abstraction of Cl, for example, would lead to the formation of the same 

nitrogen-centred radicals that are formed by reaction of the hydrated electron  and which 

lead to 100% efficient fragmentation as already demonstrated in this study (as depicted  
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in Scheme 2). However, the kinetic data do not allow a calculation of the degree of 

selectivity of attack and it is not possible to calculate the efficiency of fragmentation 

following abstraction of Cl. It is clear however, that the overall increase in efficiency from 

32% to 42% when only 1 in 10 of N-H  is substituted by N-Cl, does support a high 

fragmentation efficiency, perhaps approaching 100%.  

For heparin and the 0.4 mM chloramide (HepCl) preparation, hydroxyl radicals produce 

fragmentation efficiencies of 8% and 19 % respectively (Figure 5). Again, as for HA and 

its chloramide preparation, HACl, there is no kinetic evidence for selectivity of attack at 

N-Cl [34]. In the 0.4mM chloramide (HepCl) preparation, the degree of N-Cl substitution 

is much greater than for HACl with 7 out of 10 N-H groups replaced by N-Cl. Although 

the kinetic data do not allow a calculation of the fragmentation efficiency following 

abstraction of Cl, it is nevertheless clear that, in the more highly substituted heparin 

biopolymer, the efficiency will be much lower than the 100% value proposed above for 

HACl. 

 

In studies of the fragmentation of the HACl and HepCl preparations by carbonate 

radicals, more marked increases in fragmentation of the chloramides relative to the 

parent molecules were found. The densitometric scans of the PAGE gels are shown in 

Figures 6a and 6b for the reactions of carbonate radicals with  HA and HACl, with 

efficiencies of 11% and 32% for HA and HACl respectively, as calculated from the slope 

of the [chain breaks] v [CO3
.-] plots in Figure 7.  It has been shown from the earlier 

kinetic study that CO3
.- reacts with the  N-Cl moiety ( 1.2 x 105 M-1 s-1), i.e. about 2.9 x 

faster than with the HA molecule (3.5 x 104 M-1 s-1) and it was thus concluded that 

carbonate radicals are likely to react in a site-specific mode at the N-Cl moiety [41]. 

Application of the latter rate constants to the concentrations of HA and the N-Cl groups 

(in HACl) indicates that about 25% of the carbonate radicals would react at N-Cl with the 
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remainder reacting with other groups such as –CH(OH)- and N-H. Assuming that the 

fragmentation efficiencies for reaction at N-Cl and in HA are 100% and 11% 

respectively, a combined fragmentation efficiency of 32% can be anticipated for the 

HACl preparation as found in Figure 7.  Thus abstraction of Cl by carbonate radicals to 

form N-centred radicals is the most probable mode of reaction and one that leads to 

100% fragmentation efficiency, analogous to the reaction of hydrated electrons which 

produce the same N-centred radicals via elimination of chloride ion.  

 

 

 

 

 

 

 

 

 

Fig. 6. Densitometric scans of the Alcian blue-stained PAGE gels for reaction of carbonate 

radicals with: (a) HA and (b) HACl (0.1 mM preparations, pH 7.0, doses 0.100 Gy). 
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Fig. 7. Effect of carbonate radical concentration on the concentration of chain breaks after 

γ-irradiation of HA and HACl solutions (pH 8.5, 0.01 M phosphate buffer). 

 

Fig. 8. Effect of carbonate radical concentration on the concentration of chain breaks after 

γ-irradiation of Hep and HepCl solutions (pH 8.5, 0.01 M phosphate buffer). 
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For the Hep and HepCl preparations, the fragmentation efficiencies were calculated as 

6% and 23% respectively, as determined from Figure 8. From the earlier kinetic study, 

the rate constants for the reactions of carbonate radicals with Hep and with the N-Cl 

group in HepCl were 5 x 104 M-1 s-1 and 8 x 104 M-1 s-1 respectively [41]. Assuming a 

substituted heparin in which 7 out 10 N-H groups are replaced by N-Cl, it can be 

calculated that about 75% of carbonate radicals react at the N-Cl group. It can thus be 

estimated from the respective fragmentation efficiencies of 6% and 23%, that reaction at 

N-Cl leads to 29% fragmentation. This value is close to the value of 25% found for the 

reaction of hydrated electron with N-Cl and supports the proposal made above for HACl 

that abstraction of Cl by carbonate radicals also leads to the N-centred amidyl radical 

and that whether produced by electron reduction or by abstraction by oxidizing agents , 

the fragmentation efficiency should be the same , as found here for HepCl preparations. 

Unlike N-Cl in HACl however, the efficiency is not 100% but much lower at 25-29%. 

 

When NO2 radicals were reacted with HA and HACl and also with Hep and HepCl , no 

movement at all was seen in the PAGE gels (data not shown) indicating that no 

fragmentation by NO2 occurs in any of the  biomolecules. There are no kinetic data on 

the reactions of NO2 with HA, HACl, Hep or HepCl and so it is not possible to say here 

that, like the superoxide experiments described above, there is kinetic reactivity but no 

resultant fragmentation. NO2 is a weak oxidizing agent and reacts, for example, with 

good reducing agents such as ascorbate and the Trolox C anion with rate constants of 

3.5 x 107 M-1 s-1 and 5.0 x 108 M-1 s-1 respectively [45,46]. Rate constants for reaction 

with glycosaminoglycans can therefore be expected to be much lower, particularly if 

reacting via H-abstraction. Chloramides are also weak oxidizing agents and hence 

unlikely to react via electron transfer to NO2. It may be therefore that the reaction is too 

slow to produce biopolymer products.  
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Conclusions 

The combination of fragmentation efficiency data for both reducing and oxidizing radicals 

has highlighted the significant role that N-Cl groups play in glycosaminoglycan 

chloramides in controlling site-specific attack. In particular, the fragmentation produced 

by the strong reducing agent, the hydrated electron is seen to determine the 

fragmentation efficiency arising from reactions of the N-centred amidyl radical. Thus in 

HACl, it is 100% efficient whereas in HepCl it is 25% efficient. It is clear therefore that 

the  heavily-charged, sulphate-containing, heparin derivative has a large effect on the 

fate of either the amidyl radical (1,2- vs 1,-5-hydrogen shifts) or on the fates of the C-2 or 

C-4 radicals arising these hydrogen shifts respectively. From the spectral data of the 

earlier kinetic study [41], it seems that the 1,2-hydrogen shift is favoured for both HACl 

and HepCl and that therefore, for HepCl ,the fragmentation route of C-2 radicals  is 

much less favoured than non- fragmentation routes (see Scheme 3).  

From the data on oxidizing radicals, particularly that from reaction of carbonate radicals, 

it also seems likely that abstraction of Cl from N-Cl occurs to produce the same N-

centred amidyl radical as produced by the hydrated electron, with the same 

fragmentation efficiencies consequent via this moiety of 100% and 29% for N-Cl groups 

in HACl and HepCl respectively.  

The weaker reducing agent, the superoxide radical and the weaker oxidizing agent, 

nitrogen dioxide produced no detectable fragmentation. The previous observations of 

kinetic reactivity of superoxide with glycosaminoglycan chloramides [23,27,42] are 

difficult to reconcile with the absence of fragmentation. Acting as a one-electron 

reductant, superoxide  would be expected to produce the amidyl radical with consequent 

fragmentation. Similarly, acting as an oxidant, it should also produce fragmentation. A 

possible explanation is that the amidyl radical reacts with oxygen to produce ultimately a 
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glycosaminoglycan nitroxide which may be stable to fragmentation. Alternatively, the C-2 

peroxy radical may be formed instead which does not lead to fragmentation. In the case 

of nitrogen dioxide, it may be that the reaction is too slow and other reactions, 

presumably self-reactions occur instead.  

 

The above discussion indicates that the carbonate radical is likely to be a potent and 

site-specific in vivo free radical in the damage of glycosaminoglycan components of the 

extracellular matrix, particularly the chloramide derivatives that are likely to be formed in 

inflammation. Reaction of these reactive species with glycosaminoglycans, which may 

be heavily-substituted by N-Cl groups under inflammatory conditions, is perhaps the key 

damaging process to these biopolymers which have structural and other important 

properties. These include roles in the activation of signaling events in cells and in the 

modulation of cellular processes, including proliferation, migration, adhesion and 

apoptosis. In the case of hyaluronan, the fragmented products of such damaging 

processes have also been shown to be pro-inflammatory and angiogenic.  

The evidence presented here also shows that sulphated glycosaminoglycans of the 

extracellular matrix such as heparan sulphate are more resistant to fragmentation by 

reactive oxidative and reductive species. The mechanisms proposed by Davies and co-

workers [23,27] help to rationalize this, as summarized in Scheme 3. 

 

Although any strong reducing agents produced in vivo will be likely to compete kinetically 

with both oxygen and the chloramides minimizing the potential for fragmentation, local 

concentrations of chloramides may be sufficiently high to compete with in vivo oxygen 

levels. Any reaction with glycosaminoglycan chloramides, particularly HACl, will produce 

efficient fragmentation. Relatively high concentrations of HOCl are likely to be formed in 

vivo under both physiological and pathological conditions. It has been estimated, for 
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example, that activation of 5×106 neutrophil cells ml-1 generates 300–400 μM HOCl over 

1–2 hours [47,48], with 2.5–5 mM HOCl produced at sites of inflammation [49]. HOCl is 

produced in inflammation by the highly basic protein myeloperoxidase which is known to 

bind, via electrostatic interactions, to negatively charged materials such as the 

polyanionic glycosaminoglycans   [50]. In perlecan, for example, it binds to the heparin 

sulphate side-chains of this proteoglycan [51]. Thus, such a mechanism for the localised 

production of HOCl in the extracellular matrix may favour a reaction at 

glycosaminoglycans to produce glycosaminoglycan chloramides and not to produce 

protein-derived chloramines and chloramides at neighbouring linked proteins.  Hence, 

high local concentrations of chloramides may prevail, making reactions of strong 

reducing agents more likely. Although, weaker reducing agents such as superoxide 

radicals will not be affected by reaction with oxygen, they do not appear to produce 

fragmentation directly: however, other weak one-electron reductants such as Cu(I) may 

do so.  

In conclusion, this study has presented quantitative data which supports a significant 

role of glycosaminoglycan chloramides in directing site-specific attack by free radicals 

and other reactive species and one which can lead to extensive fragmentation of these 

important in vivo  components of the extracellular matrix. The study has also highlighted 

the dramatic effect that sulphate groups have in minimizing fragmentation of these 

components. 
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