22 research outputs found

    Building a framework for process-oriented evaluation of Regional Climate Outlook Forums

    Get PDF
    In many regions around the world, Regional Climate Outlook Forums (RCOFs) provide seasonal climate information and forecasts to decision-makers at regional and national levels. Despite having two decades of experience, the forums have not been systematically monitored or evaluated. To address this gap, and to better inform nascent and widespread efforts in climate services, the authors propose a process-oriented evaluation framework derived from literature on decision support and climate communication around the production and use of scientific information.The authors apply this framework to a case study of the Caribbean RCOF (CariCOF), where they have been engaged in a collaborative effort to integrate climate information and decision processes to enhance regional climate resilience. The authors’ examination of the CariCOF shows an evolution toward the use of more advanced and more diverse climate products, as well as greater awareness of user feedback. It also reveals shortfalls of the CariCOF, including a lack of diverse stakeholder participation, a need for better understanding of best practices to tailor information, undeveloped market research of climate products, insufficient experimentation and vetting of communication mechanisms, and the absence of a way to steward a diverse network of regional actors. The authors’ analysis also provides insight that allowed for improvements in the climate services framework to include mechanisms to respond to changing needs and conditions. The authors’ process-oriented framework can serve as a starting point for evaluating RCOFs and other organizations charged with the provision of climate services

    Building resilience to mosquito-borne diseases in the Caribbean.

    Get PDF
    Small island developing states in the Caribbean are among the most vulnerable countries on the planet to climate variability and climate change. In the last 3 decades, the Caribbean region has undergone frequent and intense heat waves, storms, floods, and droughts. This has had a detrimental impact on population health and well-being, including an increase in infectious disease outbreaks. Recent advances in climate science have enhanced our ability to anticipate hydrometeorological hazards and associated public health challenges. Here, we discuss progress towards bridging the gap between climate science and public health decision-making in the Caribbean to build health system resilience to extreme climatic events. We focus on the development of climate services to help manage mosquito-transmitted disease epidemics. There are numerous areas of ongoing biological research aimed at better understanding the direct and indirect impacts of climate change on the transmission of mosquito-borne diseases. Here, we emphasise additional factors that affect our ability to operationalise this biological understanding. We highlight a lack of financial resources, technical expertise, data sharing, and formalised partnerships between climate and health communities as major limiting factors to developing sustainable climate services for health. Recommendations include investing in integrated climate, health and mosquito surveillance systems, building regional and local human resource capacities, and designing national and regional cross-sectoral policies and national action plans. This will contribute towards achieving the Sustainable Development Goals (SDGs) and maximising regional development partnerships and co-benefits for improved health and well-being in the Caribbean

    Co-learning during the co-creation of a dengue early warning system for the health sector in Barbados

    Get PDF
    Over the past decade, the Caribbean region has been challenged by compound climate and health hazards, including tropical storms, extreme heat and droughts and overlapping epidemics of mosquito-borne diseases, including dengue, chikungunya and Zika. Early warning systems (EWS) are a key climate change adaptation strategy for the health sector. An EWS can integrate climate information in forecasting models to predict the risk of disease outbreaks several weeks or months in advance. In this article, we share our experiences of co-learning during the process of co-creating a dengue EWS for the health sector in Barbados, and we discuss barriers to implementation as well as key opportunities. This process has involved bringing together health and climate practitioners with transdisciplinary researchers to jointly identify needs and priorities, assess available data, co-create an early warning tool, gather feedback via national and regional consultations and conduct trainings. Implementation is ongoing and our team continues to be committed to a long-term process of collaboration. Developing strong partnerships, particularly between the climate and health sectors in Barbados, has been a critical part of the research and development. In many countries, the national climate and health sectors have not worked together in a sustained or formal manner. This collaborative process has purposefully pushed us out of our comfort zone, challenging us to venture beyond our institutional and disciplinary silos. Through the co-creation of the EWS, we anticipate that the Barbados health system will be better able to mainstream climate information into decision-making processes using tailored tools, such as epidemic forecast reports, risk maps and climate-health bulletins, ultimately increasing the resilience of the health system

    Co-developing climate services for public health: Stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean.

    Get PDF
    BACKGROUND: Small island developing states (SIDS) in the Caribbean region are challenged with managing the health outcomes of a changing climate. Health and climate sectors have partnered to co-develop climate services to improve the management of emerging arboviral diseases such as dengue fever, for example, through the development of climate-driven early warning systems. The objective of this study was to identify health and climate stakeholder perceptions and needs in the Caribbean, with respect to the development of climate services for arboviruses. METHODS: Stakeholders included public decision makers and practitioners from the climate and health sectors at the regional (Caribbean) level and from the countries of Dominica and Barbados. From April to June 2017, we conducted interviews (n = 41), surveys (n = 32), and national workshops with stakeholders. Survey responses were tabulated, and audio recordings were transcribed and analyzed using qualitative coding to identify responses by research topic, country/region, and sector. RESULTS: Health practitioners indicated that their jurisdiction is currently experiencing an increased risk of arboviral diseases associated with climate variability, and most anticipated that this risk will increase in the future. National health sectors reported financial limitations and a lack of technical expertise in geographic information systems (GIS), statistics, and modeling, which constrained their ability to implement climate services for arboviruses. National climate sectors were constrained by a lack of personnel. Stakeholders highlighted the need to strengthen partnerships with the private sector, academia, and civil society. They identified a gap in local research on climate-arbovirus linkages, which constrained the ability of the health sector to make informed decisions. Strategies to strengthen the climate-health partnership included a top-down approach by engaging senior leadership, multi-lateral collaboration agreements, national committees on climate and health, and shared spaces of dialogue. Mechanisms for mainstreaming climate services for health operations to control arboviruses included climatic-health bulletins and an online GIS platform that would allow for regional data sharing and the generation of spatiotemporal epidemic forecasts. Stakeholders identified a 3-month forecast of arboviral illness as the optimal time frame for an epidemic forecast. CONCLUSIONS: These findings support the creation of interdisciplinary and intersectoral 'communities of practice' and the co-design of climate services for the Caribbean public health sector. By fostering the effective use of climate information within health policy, research and practice, nations will have greater capacity to adapt to a changing climate

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and RĂ©union Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Regional Climates

    No full text

    Central America and the Caribbean

    Get PDF
    TĂ­tulo del documento: State of the climate in 2015. Dentro del archivo completo se encontra el apartado correspondiente a Central America and the Caribbean.This chapter provides summaries of the 2015 temperature and precipitation conditions across seven broad regions: North America, Central America and the Caribbean, South America, Africa, Europe, Asia, and Oceania. In most cases, summaries of notable weather events are also included. Local scientists provided the annual summary for their respective regions and, unless otherwise noted, the source of the data used is typically the agency affiliated with the authors. Please note that different nations, even within the same section, may use unique periods to define their normals. Section introductions will typically define the prevailing practices for that section, and exceptions will be noted within the text. In a similar way, many contributing authors use languages other than English as their primary professional language. To minimize additional loss of fidelity through reinterpretation after translation, editors have been conservative and careful to preserve the voice of the author. In some cases, this may result in abrupt transitions in style from section to section.U.S. Department of Energy/[DE-AC05-76RLO1830]//Estados UnidosUCR::VicerrectorĂ­a de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de Investigaciones GeofĂ­sicas (CIGEFI

    State of the climate in 2014

    No full text
    Most of the dozens of essential climate variables monitored each year in this report continued to follow their long-term trends in 2014, with several setting new records. Carbon dioxide, methane, and nitrous oxide-the major greenhouse gases released into Earth's atmosphere-once again all reached record high average atmospheric concentrations for the year. Carbon dioxide increased by 1.9 ppm to reach a globally averaged value of 397.2 ppm for 2014. Altogether, 5 major and 15 minor greenhouse gases contributed 2.94 W m-2 of direct radiative forcing, which is 36% greater than their contributions just a quarter century ago. Accompanying the record-high greenhouse gas concentrations was nominally the highest annual global surface temperature in at least 135 years of modern record keeping, according to four independent observational analyses. The warmth was distributed widely around the globe's land areas, Europe observed its warmest year on record by a large margin, with close to two dozen countries breaking their previous national temperature records; many countries in Asia had annual temperatures among their 10 warmest on record; Africa reported above-average temperatures across most of the continent throughout 2014; Australia saw its third warmest year on record, following record heat there in 2013; Mexico had its warmest year on record; and Argentina and Uruguay each had their second warmest year on record. Eastern North America was the only major region to observe a below-average annual temperature. But it was the oceans that drove the record global surface temperature in 2014. Although 2014 was largely ENSO-neutral, the globally averaged sea surface temperature (SST) was the highest on record. The warmth was particularly notable in the North Pacific Ocean where SST anomalies signaled a transition from a negative to positive phase of the Pacific decadal oscillation. In the winter of 2013/14, unusually warm water in the northeast Pacific was associated with elevated ocean heat content anomalies and elevated sea level in the region. Globally, upper ocean heat content was record high for the year, reflecting the continued increase of thermal energy in the oceans, which absorb over 90% of Earth's excess heat from greenhouse gas forcing. Owing to both ocean warming and land ice melt contributions, global mean sea level in 2014 was also record high and 67 mm greater than the 1993 annual mean, when satellite altimetry measurements began. Sea surface salinity trends over the past decade indicate that salty regions grew saltier while fresh regions became fresher, suggestive of an increased hydrological cycle over the ocean expected with global warming. As in previous years, these patterns are reflected in 2014 subsurface salinity anomalies as well. With a now decade-long trans-basin instrument array along 26°N, the Atlantic meridional overturning circulation shows a decrease in transport of-4.2 ± 2.5 Sv decade-1. Precipitation was quite variable across the globe. On balance, precipitation over the world's oceans was above average, while below average across land surfaces. Drought continued in southeastern Brazil and the western United States. Heavy rain during April-June led to devastating floods in Canada's Eastern Prairies. Above-normal summer monsoon rainfall was observed over the southern coast of West Africa, while drier conditions prevailed over the eastern Sahel. Generally, summer monsoon rainfall over eastern Africa was above normal, except in parts of western South Sudan and Ethiopia. The south Asian summer monsoon in India was below normal, with June record dry. Across the major tropical cyclone basins, 91 named storms were observed during 2014, above the 1981-2010 global average of 82. The Eastern/Central Pacific and South Indian Ocean basins experienced significantly above-normal activity in 2014; all other basins were either at or below normal. The 22 named storms in the Eastern/Central Pacific was the basin's most since 1992. Similar to 2013, the North Atlantic season was quieter than most years of the last two decades with respect to the number of storms, despite the absence of El Niño conditions during both years. In higher latitudes and at higher elevations, increased warming continued to be visible in the decline of glacier mass balance, increasing permafrost temperatures, and a deeper thawing layer in seasonally frozen soil. In the Arctic, the 2014 temperature over land areas was the fourth highest in the 115-year period of record and snow melt occurred 20-30 days earlier than the 1998-2010 average. The Greenland Ice Sheet experienced extensive melting in summer 2014. The extent of melting was above the 1981-2010 average for 90% of the melt season, contributing to the second lowest average summer albedo over Greenland since observations began in 2000 and a record-low albedo across the ice sheet for August. On the North Slope of Alaska, new record high temperatures at 20-m depth were measured at four of five permafrost observatories. In September, Arctic minimum sea ice extent was the sixth lowest since satellite records began in 1979. The eight lowest sea ice extents during this period have occurred in the last eight years. Conversely, in the Antarctic, sea ice extent countered its declining trend and set several new records in 2014, including record high monthly mean sea ice extent each month from April to November. On 20 September, a record large daily Antarctic sea ice extent of 20.14 × 106 km2 occurred. The 2014 Antarctic stratospheric ozone hole was 20.9 million km2 when averaged from 7 September to 13 October, the sixth smallest on record and continuing a decrease, albeit statistically insignificant, in area since 1998
    corecore