100 research outputs found

    Metodi e soluzioni per ambienti inclusivi. Esperienze didattiche dell'Università di Pavia in collaborazione con ANIE AssoAscensori

    Get PDF
    Questa pubblicazione raccoglie le esperienze di un triennio di attività svolte da un gruppo di ricercatori di Architettura Tecnica afferenti al Dipartimento di Ingegneria Civile e Architettura (DICAr) dell’Università di Pavia in collaborazione con ANIE AssoAscensori. Le idee, i progetti e i contenuti che emergono in questo lavoro, orientati alla diffusione di una cultura progettuale inclusiva e senza barriere (architettoniche e culturali) sia alla scala urbana sia alla scala del manufatto edilizio storico, sintetizzano perfettamente le tre missioni dell’Ateneo: didattica, ricerca e terza missione

    A Highly Accelerated Parallel Multi-GPU based Reconstruction Algorithm for Generating Accurate Relative Stopping Powers

    Get PDF
    Low-dose Proton Computed Tomography (pCT) is an evolving imaging modality that is used in proton therapy planning which addresses the range uncertainty problem. The goal of pCT is generating a 3D map of Relative Stopping Power (RSP) measurements with high accuracy within clinically required time frames. Generating accurate RSP values within the shortest amount of time is considered a key goal when developing a pCT software. The existing pCT softwares have successfully met this time frame and even succeeded this time goal, but requiring clusters with hundreds of processors. This paper describes a novel reconstruction technique using two Graphics Processing Unit (GPU) cores, such as is available on a single Nvidia P100. The proposed reconstruction technique is tested on both simulated and experimental datasets and on two different systems namely Nvidia K40 and P100 GPUs from IBM and Cray. The experimental results demonstrate that our proposed reconstruction method meets both the timing and accuracy with the benefit of having reasonable cost, and efficient use of power.Comment: IEEE NSS/MIC 201

    Loggerhead Sea Turtle as Possible Source of Transmission for Zoonotic Listeriosis in the Marine Environment

    Get PDF
    Listeria monocytogenes is an ubiquitous pathogen isolated from different host species including fish, crustaceans, and molluscs, but it is rarely a pathogenic microorganism to marine reptiles. In particular, only two cases of fatal disseminated listeriosis have been described in the loggerhead sea turtle (Caretta caretta). In this study, we describe a lethal case of L. monocytogenes infection in a loggerhead sea turtle. The turtle was found alive, stranded on a beach in North-eastern Italy, but perished soon after being rescued. The autoptic examination revealed that heart, lung, liver, spleen, and urinary bladder were disseminated with multiple, firm, 0.1–0.5 mm sized, nodular, white-green lesions. Microscopically, these lesions corresponded with heterophilic granulomas with Gram+ bacteria within the necrotic center. Furthermore, the Ziehl–Neelsen stain was negative for acid-fast organisms. Colonies isolated from heart and liver were tested through MALDI-TOF for species identification, revealing the presence of L. monocytogenes. Whole Genome Sequencing on L. monocytogenes isolates was performed and the subsequent in silico genotyping revealed the belonging to Sequence Type 6 (ST 6); the virulence profile was evaluated, showing the presence of pathogenicity islands commonly observed in ST 6. Our results further confirm that L. monocytogenes should be posed in differential diagnosis in case of nodular lesions of loggerhead sea turtles; thus, given the zoonotic potential of the microorganism, animals should be treated with particular caution. In addition, wildlife animals can play an active role as carriers of possibly pathogenetic and virulent strains and contribute to the distribution of L. monocytogenes in the environment

    Reduction of the microbial load in meat maturation rooms with and without alkaline electrolyzed water fumigation

    Get PDF
    Dry-aging is a process during which meat is stored within maturation chambers at low temperatures and low relative humidity, resulting in improved tenderness and flavor development. The cuts are exposed to the atmosphere by hanging them or setting them on racks in the maturation chamber without any protective packaging. Animals and humans are usually the major sources of bacterial food contamination in the meat industry, but other routes might be involved. Therefore, procedures to reduce or eliminate pathogens from surfaces are crucial for an effective hazard analysis critical control point program in the food industry and other environments. This study aimed to assess the survival of Listeria monocytogenes, Escherichia coli, Salmonella spp., and Staphylococcus aureus on the inner surface of dry aging chambers. Moreover, we tested the efficacy of alkaline electrolyzed water (REW) for its eventual application within a procedure aimed at reducing foodborne pathogens during meat storage. Environmental conditions inside the dry aging cabinet determine a reduction of circa 3 log CFU/cm2 of the considered microorganisms on the inner surface in 24 hours. Additionally, the nebulization of alkaline electrolyzed water with the smoking system increased the count reduction in 24 hours due to environmental conditions for L. monocytogenes (~1 log CFU/cm2) and for S. aureus (~2 log CFU/cm2). In this context, the use of REW can be justified for routine cleaning procedures of the surfaces, with the added value of being safe to handle, not containing environmental pollutants, and making it unnecessary to rinse surfaces due to its instability

    Implementation of the ERAS (Enhanced Recovery After Surgery) protocol for colorectal cancer surgery in the Piemonte Region with an Audit and Feedback approach: study protocol for a stepped wedge cluster randomised trial: a study of the EASY-NET project

    Get PDF

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Modelling and improvement of proton computed tomography

    Get PDF
    Proton computed tomography (pCT) is a promising imaging technique to substitute x-ray CT for more accurate proton therapy treatment planning as it allows to calculate directly proton relative stopping power (RSP) from proton energy loss measurements. A novel pCT scanner (phase II pCT scanner prototype) was completed with a siliconbased particle tracking system and a 5 stage scintillating energy detector. In parallel, a modular software platform was developed to characterize the performance of the pCT system. The modular pCT software platform consists of (1) a Geant4-based simulation modelling the Loma Linda (California, USA) proton therapy beam line and the phase II pCT scanner prototype, (2) water equivalent path length calibration and (3) conversion of the scintillating energy detector, and (4) image reconstruction algorithm for the reconstruction of the RSP of the scanned object. The platform has been validated with respect to experimental measurements and proved to be a valid tool to characterize and optimize the novel pCT system. The results show that the pCT software platform accurately reproduces the performance of the existing phase II pCT scanner prototype with a RSP agreement between experimental and simulated values to better than 1.5%. The pCT software platform was also used to perform a dosimetric evaluation of the phase II pCT scanner prototype. The results are very promising because the dose delivered during a pCT scan was calculated to be 10 time less than the dose delivered during a cone-beam CT scan. Finally, the accuracy of the most likely path calculation in homogeneous and heterogeneous medium was also investigated using a pixelated Medipix detector. The detector was successfully integrated with the experimental phase II pCT scanner prototype. A Geant4 simulation of the pCT-Medipix system was also developed and theoretically predicted, simulated and experimental data were compared and analysed. The agreement between experimental and simulated results is always within one standard deviation and the correlation coefficients between predicted and measured data is close to 1, showing a good agreement between predicted and measured data
    corecore